Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
PANG Zhao-bin, WANG Jian-gang, CUI Hong-you, WANG Jing-hua. In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5
Citation: PANG Zhao-bin, WANG Jian-gang, CUI Hong-you, WANG Jing-hua. In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5

In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar

doi: 10.1016/S1872-5813(23)60344-5
Funds:  The project was supported by the National Natural Science Foundation of China (21978158).
  • Received Date: 2022-12-18
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2023-01-18
  • Available Online: 2023-03-08
  • Publish Date: 2023-09-30
  • Fast pyrolysis of biomass is an effective way for biomass conversion and utilization. However, the pyrolysis temperature is usually high because it is a non-catalytic process, resulting in the complicated composition of bio-oil and difficulty to control. Aiming to explore in-situ catalysis in this paper, the fast pyrolysis of lignin, cellulose, corncob and pine wood powder was studied using ZnCl2 as the catalyst. The activation energies of non-catalytic pyrolysis and catalytic pyrolysis were obtained based on kinetic fitting of their thermal gravimetric curves. The variation in pyrolysis oil composition was analyzed. It was found that ZnCl2 in-situ catalysis could not only significantly reduce the pyrolysis temperature, but also simplify the resultant bio-oil composition. Even under pyrolysis temperature as low as 350 ℃, fast pyrolysis of pine wood powder could achieve a yield of 47% of bio-oil, which was predominantly composed of the derivatives of cellulose and hemicellulose. ZnCl2 in-situ catalysis could significantly decrease the activation energy of cellulose cracking from 304.78 to 112.46 kJ/mol, but has little effect on that of lignin. The carbon residue from ZnCl2-catalyzed pyrolysis was further carbonized at 600 ℃, affording activated carbon with adsorption capacity of phenol up to 165 mg/g. The research work provides guidance and reference for the development of in-situ catalytic pyrolysis technology with high efficiency.
  • loading
  • [1]
    LIANG J, SHAN G C, SUN Y F. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable Sustainable Energy Rev,2021,139:110707. doi: 10.1016/j.rser.2021.110707
    [2]
    李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化研究进展[J]. 燃料化学学报,2021,49(12):1733−1851.

    LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Research progress of cellulose pyrolysis transformation[J]. J Fuel Chem Technol,2021,49(12):1733−1851.
    [3]
    WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [4]
    BHOI P R, OUEDRAOGO A S, SOLOIU V, QUIRINO R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev,2020,121:109676. doi: 10.1016/j.rser.2019.109676
    [5]
    RAHMAN M M, LIU R, CAI J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review[J]. Fuel Process Technol,2018,180:32−46. doi: 10.1016/j.fuproc.2018.08.002
    [6]
    ZHANG C T, ZHANG L J, LI Q Y, WANG Y, LIU Q, WEI T, DONG D H, SALAVATI S, GHOLIZADEH M, HU X. Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass Bioenergy,2019,124:125−141. doi: 10.1016/j.biombioe.2019.03.017
    [7]
    DAI G X, WANG S R, HUANG S Q, ZOU Q. Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition[J]. J Anal Appl Pyrolysis,2018,134:439−445. doi: 10.1016/j.jaap.2018.07.010
    [8]
    HASSAN N S, JALIL A A, HITAM C N C, VO D V N, NABGAN W. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review[J]. Environ Chem Lett,2020,18(5):1625−1648. doi: 10.1007/s10311-020-01040-7
    [9]
    LIU C J, WANG H M, KARIM A M, SUN J M, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev,2014,43(22):7594−7623. doi: 10.1039/C3CS60414D
    [10]
    尹海云, 李小华, 张蓉仙, 樊永胜, 俞宁, 蔡忆昔. HZSM-5在线提质生物油及催化剂失活机理分析[J]. 燃料化学学报,2014,42(9):1077−1086.

    YIN Hai-yun, LI Xiao hua, ZHANG Rong-xian, FAN Yong-sheng, YU Ning, CAI Yi-xi. HZSM-5 online enhancement of bio-oil and analysis of catalyst deactivation mechanism[J]. J Fuel Chem Technol,2014,42(9):1077−1086.
    [11]
    CHENG S L, ZHANG Z M, ZHANG D M, DENG Y. Microwave irradiation pyrolysis of rice straw in ionic liquid ([Emim]Br)[J]. Bioresources,2013,8(3):3994−4003.
    [12]
    ZHOU X W, MAYES H B, BROADBELT L J, NOLTE M W, SHANKS B H. Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 1: Experiments and development of a mechanistic model[J]. AlChE J,2015,62(3):766−777.
    [13]
    LENG E W, WANG Y, GONG X, ZHANG B, ZHANG Y, XU M H. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proc Combust Inst,2017,36(2):2263−2270. doi: 10.1016/j.proci.2016.06.167
    [14]
    OH S-J, CHOI G-G, KIM J-S. Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural[J]. Energy,2015,88:697−702. doi: 10.1016/j.energy.2015.05.101
    [15]
    LU Q, DONG C Q, ZHANG X M, TIAN H Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis,2011,90(2):204−212. doi: 10.1016/j.jaap.2010.12.007
    [16]
    ASTM E871-82(2019), Standard Test Method for Moisture Analysis of Particulate Wood Fuels[S].
    [17]
    ASTM E1755-01(2007), Standard Test Method for Ash in Biomass[S].
    [18]
    ASTM E872-82(2006), Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels[S].
    [19]
    NY/T 3498—2019, 农业生物质原料成分测定--元素分析仪法[S].

    NY/T 3498—2019, Determination of the composition of agricultural biomass raw materials by Elemental analyzer method[S].
    [20]
    ZHANG Y, CUI H Y, YI W M, SONG F, ZHAO P P, WANG L H, CUI J Y. Highly effective decarboxylation of the carboxylic acids in fast pyrolysis oil of rice husk towards ketones using CaCO3 as a recyclable agent[J]. Biomass Bioenergy,2017,102:13−22. doi: 10.1016/j.biombioe.2017.04.004
    [21]
    RAZA M, ABU-JDAYIL B, AL-MARZOUQI A H, INAYAT A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method[J]. Renew Energy,2022,183:67−77. doi: 10.1016/j.renene.2021.10.065
    [22]
    HU J, SHEN D K, WU S L, XIAO R. Insight into the effect of ZnCl2 on analytical pyrolysis behavior of cellulolytic enzyme corn stover lignin[J]. J Anal Appl Pyrolysis,2017,127:444−450. doi: 10.1016/j.jaap.2017.07.005
    [23]
    CHEN D Y, CEN K H, ZHUANG X Z, GAN Z Y, ZHOU J B, ZHANG Y M, ZHANG H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil[J]. Combust Flame,2022,242:112142. doi: 10.1016/j.combustflame.2022.112142
    [24]
    CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry[J]. Ind Crops Prod,2004,20(2):131−141. doi: 10.1016/j.indcrop.2004.04.016
    [25]
    KUMAR P, BARRETT D M, DELWICHE M J, STROEVE P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Ind Eng Chem Res,2009,48(8):3713−3729. doi: 10.1021/ie801542g
    [26]
    MA S W, ZHANG L Q, ZHU L, ZHU X F. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation[J]. J Anal Appl Pyrolysis,2018,131:113−119. doi: 10.1016/j.jaap.2018.02.017
    [27]
    LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chem Rev,2015,115(22):12251−12285. doi: 10.1021/acs.chemrev.5b00195
    [28]
    ZHANG H Y, LIU X J, LU M Z, HU X Y, LU L G, TIAN X N, JI J B. Role of Bronsted acid in selective production of furfural in biomass pyrolysis[J]. Bioresour Technol,2014,169:800−803. doi: 10.1016/j.biortech.2014.07.053
    [29]
    LI Y, HU B, NAQVI S R, ZHANG Z X, LI K, LU Q. Selective preparation of 5-hydroxymethylfurfural by catalytic fast pyrolysis of cellulose over zirconium-tin mixed metal oxides[J]. J Anal Appl Pyrolysis,2021,155:105103. doi: 10.1016/j.jaap.2021.105103
    [30]
    QU G F, HE W W, CAI Y Y, HUANG X, NING P. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf[J]. Carbohydr Polym,2016,148:390−396. doi: 10.1016/j.carbpol.2016.04.052
    [31]
    OH S-J, CHOI G-G, KIM J-S. Production of acetic acid-rich bio-oils from the fast pyrolysis of biomass and synthesis of calcium magnesium acetate deicer[J]. J Anal Appl Pyrolysis,2017,124:122−129. doi: 10.1016/j.jaap.2017.01.032
    [32]
    ESSANDOH M, KUNWAR B, PITTMAN C U, MOHAN D, MLSNA T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chem Eng J,2015,265:219−227. doi: 10.1016/j.cej.2014.12.006
    [33]
    LI Z H, XING B, DING Y, LI Y C, WANG S R. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue[J]. Chin J Chem Eng,2020,28(11):2872−2880. doi: 10.1016/j.cjche.2020.03.031
    [34]
    SINGH R, DUTTA R K, NAIK D V, RAY A, KANAUJIA P K. High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater[J]. Environm Challenges,2021,5:100353. doi: 10.1016/j.envc.2021.100353
    [35]
    MOHAMMED N A S, ABU-ZURAYK R A, HAMADNEH I, AL-DUJAILI A H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies[J]. J Environ Manage,2018,226:377−385. doi: 10.1016/j.jenvman.2018.08.033
    [36]
    GAO W R, LIN Z X, CHEN H R, YAN S S, ZHU H N, ZHANG H, SUN H Q, ZHANG S, ZHANG S J, WU Y L. Roles of graphitization degree and surface functional groups of N-doped activated biochar for phenol adsorption[J]. J Anal Appl Pyrolysis,2022,167:105700. doi: 10.1016/j.jaap.2022.105700
    [37]
    LI Y C, LI Z H, XING B, LI H M, MA Z Q, ZHANG W B, REUBROYCHAROEN P, WANG S R. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping[J]. J Anal Appl Pyrolysis,2021,155:105072. doi: 10.1016/j.jaap.2021.105072
    [38]
    FENG D D, GUO D W, ZHANG Y, SUN S Z, ZHAO Y J, SHANG Q, SUN H L, WU J Q, TAN H P. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption[J]. Chem Eng J,2021,410:127707. doi: 10.1016/j.cej.2020.127707
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (554) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return