Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
GUO Shu-jia, WANG Han, QIN Zhang-feng, LI Zhi-kai, WANG Guo-fu, DONG Mei, FAN Wei-bin, WANG Jian-guo. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9
Citation: GUO Shu-jia, WANG Han, QIN Zhang-feng, LI Zhi-kai, WANG Guo-fu, DONG Mei, FAN Wei-bin, WANG Jian-guo. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9

Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration

doi: 10.1016/S1872-5813(23)60346-9
Funds:  The project was supported by the National Key Research and Development Program of China (2020YFB0606404) and National Natural Science Foundation of China (21991092, 22272195, U2003123, U1910203).
More Information
  • Corresponding author: E-mail: qzhf@sxicc.ac.cnlizhikai@sxicc.ac.cn
  • Received Date: 2023-02-16
  • Accepted Date: 2023-03-06
  • Rev Recd Date: 2023-03-05
  • Available Online: 2023-03-09
  • Publish Date: 2023-04-15
  • Due to the intervention from the water-gas shift (WGS) reaction (or the reverse one (RWGS)), the hydrogenation of CO (or CO2) into alcohols and hydrocarbons often displays rather high selectivity to CO2 (or CO), which makes it rather puzzling to evaluate such conversion processes by using the relatively low selectivity to the target products. Herein, a thermodynamic consideration is made to elaborately evaluate the effect of the WGS/RWGS reaction on the hydrogenation of CO, CO2, and their mixture to typical alcohols (e.g. methanol) and hydrocarbons (e.g. ethene). The results indicate that for the hydrogenation of CO (or CO2), although the WGS (or RWGS) reaction, acting as a communicating vessel connecting CO and CO2, may have a severe influence on the equilibrium conversion of CO (or CO2), forming a large amount of CO2 (or CO), it only has a relatively minor impact on the C-based equilibrium yield of the target alcohol/hydrocarbon product. The hydrogenation of CO shows a higher C-based equilibrium yield for the target product than the hydrogenation of CO2, while the overall C-based equilibrium yield of target product for the hydrogenation of the CO and CO2 mixture just lies in between. For the hydrogenation of the CO and CO2 mixture, although the equilibrium conversion of CO and CO2 may vary greatly with the change in the feed composition, the relation between the overall C-based equilibrium yield of the target product and the feed composition is rather simple; that is, the overall C-based equilibrium yield of alcohol/hydrocarbon product decreases almost lineally with the increase of the CO2/(CO + CO2) molar ratio in the feed. These results strongly suggest that the mixture of CO and CO2 is credible in practice for the production of alcohols and hydrocarbons through hydrogenation, where the overall C-based yield should be used as the major index for the hydrogenation of CO, CO2, and their mixture.

  • #Joint first authors
  • loading
  • [1]
    ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [2]
    ZHAO S Q, LI H W, WANG B, YANG X L, PENG Y H, DU H, ZHANG Y, HAN D Z, LI Z. Recent advances on syngas conversion targeting light olefins[J]. Fuel,2022,321:124124. doi: 10.1016/j.fuel.2022.124124
    [3]
    JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [4]
    WANG H, FAN S, WANG S, DONG M, QIN Z F, FAN W B, WANG J G. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [5]
    BUSHUYEV O S, DE LUNA P, DINH C T, TAO L, SAUR G, VAN DE LAGEMAAT J, KELLEY S O, SARGENT E H. What should we make with CO2 and how can we make it?[J]. Joule,2018,2(5):825−832. doi: 10.1016/j.joule.2017.09.003
    [6]
    POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [7]
    ZHONG J W, YANG X F, WU Z L, LIANG B L, HUANG Y Q, ZHANG T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49(5):1385−1413. doi: 10.1039/C9CS00614A
    [8]
    FAYISA B A, YANG Y, ZHEN Z, WANG M Y, LV J, WANG Y, MA X. Engineered chemical utilization of CO2 to methanol via direct and indirect hydrogenation pathways: A review[J]. Ind Eng Chem Res,2022,61(29):10319−10335. doi: 10.1021/acs.iecr.2c00402
    [9]
    ALVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117(14):9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [10]
    XIAO F S, AZEVEDO D, NICHOLAS C P, PETIT C. Preface for special issue on engineered methodologies for CO2 utilization[J]. Ind Eng Chem Res,2022,61(29):10295−10297. doi: 10.1021/acs.iecr.2c02297
    [11]
    RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345. doi: 10.1021/acscatal.0c02930
    [12]
    PORTILLO A, ATEKA A, EREÑA J, BILBAO J, AGUAYO A T. Role of Zr loading into In2O3 catalysts for the direct conversion of CO2/CO mixtures into light olefins[J]. J Environ Manage,2022,316:115329. doi: 10.1016/j.jenvman.2022.115329
    [13]
    VO C H, PÉREZ-RAMÍREZ J, FAROOQ S, KARIMI I A. Prospects of producing higher alcohols from carbon dioxide: A process system engineering perspective[J]. ACS Sustainable Chem Eng,2022,10(36):11875−11884. doi: 10.1021/acssuschemeng.2c02810
    [14]
    AHMAD K, UPADHYAYULA S. Greenhouse gas CO2 hydrogenation to fuels: A thermodynamic analysis[J]. Environ Prog Sustainable Energy,2019,38(1):98−111. doi: 10.1002/ep.13028
    [15]
    GUO S J, WANG H, QIN Z F, LI Z K, WANG G F, DONG M, FAN W B, WANG J G. Feasibility, limit, and suitable reaction conditions for the production of alcohols and hydrocarbons from CO and CO2 through hydrogenation, a thermodynamic consideration[J]. Ind Eng Chem Res,2022,61(46):17027−17038. doi: 10.1021/acs.iecr.2c02898
    [16]
    LIU J G, QIN Z F, WANG J G. Methanol synthesis under supercritical conditions: calculations of equilibrium conversions by using the Soave-Redlich-Kwong equation of state[J]. Ind Eng Chem Res,2001,40(17):3801−3805. doi: 10.1021/ie0100479
    [17]
    QIN Z F, LIU J G, WANG J G. Solvent effects on higher alcohols synthesis under supercritical conditions: A thermodynamic consideration[J]. Fuel Process Technol,2004,85(8/10):1175−1192.
    [18]
    SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem Eng Sci,1972,27(6):1197−1203. doi: 10.1016/0009-2509(72)80096-4
    [19]
    GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, JOOSTEN G E H. Chemical equilibria in methanol synthesis[J]. Chem Eng Sci,1986,41(11):2883−2890. doi: 10.1016/0009-2509(86)80019-7
    [20]
    ZHANG W Y, WANG S, GUO S J, QIN Z F, DONG M, FAN W B, WANG J G. GamCrOx/H-SAPO-34(F), a highly efficient bifunctional catalyst for the direct conversion of CO2 into ethene and propene[J]. Fuel,2022,329:125475. doi: 10.1016/j.fuel.2022.125475
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1805) PDF downloads(375) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return