Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
SUN Jia-qiang, ZHENG Shen-ke, CHEN Jian-gang. Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4
Citation: SUN Jia-qiang, ZHENG Shen-ke, CHEN Jian-gang. Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1291-1297. doi: 10.1016/S1872-5813(23)60352-4

Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks

doi: 10.1016/S1872-5813(23)60352-4
Funds:  The project was supported by the National Natural Science Foundation of China (21503256, 22072175), “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA21021000), Sanju Environmental Protection New Material Company and the Research Foundation of Huanggang Normal University (2042020026)
More Information
  • Corresponding author: E-mail: zhengshenke@hgnu.edu.cnchenjg@sxicc.ac.cn
  • Received Date: 2023-01-12
  • Accepted Date: 2023-02-06
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-03-24
  • Publish Date: 2023-09-30
  • Supported cobalt catalysts (Co@C-ZnZrO2 and Co/ZnZrO2) were prepared through a metal-organic frameworks (MOFs)-mediated synthesis strategy. The influence of MOFs pyrolysis on the structure and Fischer-Tropsch synthesis performance of supported cobalt catalysts was investigated. The crystalline phase and microstructure of supported cobalt catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The Co/ZnZrO2 showed the CO conversion of 18.1% and the C5 + selectivity of 77.4%, whereas the Co@C-ZnZrO2 exhibited the CO conversion of 8.5% and the C5 + selectivity of 35.2%. The excellent CO conversion for Co/ZnZrO2 was attributed to the more exposure of active Co sites. Meanwhile, the activity of Co sites on Co@C-ZnZrO2 catalyst was restricted by the carbon layer, suppressing the adsorption and activation of syngas on Co sites.
  • loading
  • [1]
    GATES B C. Supported metal-clusters: Synthesis, structure, and catalysis[J]. Chem Rev,1995,95(3):511−522. doi: 10.1021/cr00035a003
    [2]
    MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chem Rev,2015,115(14):6687−6718. doi: 10.1021/cr500486u
    [3]
    TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [4]
    RAHMATI M, SAFDARI M S, FLETCHER T H, ARGYLE M D, BARTHOLOMEW C H. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis[J]. Chem Rev,2020,120(10):4455−4533. doi: 10.1021/acs.chemrev.9b00417
    [5]
    KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107(5):1692−1744. doi: 10.1021/cr050972v
    [6]
    FISCHER N, VAN STEEN E, CLAEYS M. Structure sensitivity of the Fischer-Tropsch activity and selectivity on alumina supported cobalt catalysts[J]. J Catal,2013,299(1):67−80.
    [7]
    JPHNSON B G, BARTHOLOMEW C H, GOODMAN D W. The role of surface structure and dispersion in CO hydrogenation on cobalt[J]. J Catal,1991,128(1):231−247. doi: 10.1016/0021-9517(91)90080-N
    [8]
    DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSETH V, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [9]
    IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal,1992,137(1):212−224. doi: 10.1016/0021-9517(92)90150-G
    [10]
    LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc,2013,135(44):16284−16287. doi: 10.1021/ja408521w
    [11]
    BEZEMER G L, BITTER J H, KUIPERS H P C E. OOSTERBEEK H, HOLEWIJN J E, Xu X, KAPTEIJN F, VAN DILLEN A J, DE JONG K P, Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [12]
    PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angew Chem Int Ed, 2015, 54 (15): 4553–4556.
    [13]
    DAVARI M, KARIMI S, TAVASOLI A, KARIMI A. Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in Fischer-Tropsch via CNTs functionalization[J]. Appl Catal A: Gen,2014,485:133−142. doi: 10.1016/j.apcata.2014.07.023
    [14]
    JACOBS G, DAS T K, ZHANG Y, LI J, RACOILLET G, DAVIS B H. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Appl Catal A: Gen,2002,233:263−281.
    [15]
    GIRARDON J S, LERMONTOV A S, GENGEMBRE L, CHERNAVSKII P A, GRIBOVAL-CONSTANT A, KHODAKOV A Y. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts[J]. J Catal,2005,230(2):339−352. doi: 10.1016/j.jcat.2004.12.014
    [16]
    MUNNIK P, KRANS N A, DE JONGH P E, DE JONG K P. Effects of drying conditions on the synthesis of Co/SiO2 and Co/Al2O3 Fischer-Tropsch catalysts[J]. ACS Catal,2014,4(9):3219−3226. doi: 10.1021/cs5006772
    [17]
    BEZEMER G L, RADSTAKE P B, KOOT V, VAN DILLEN A J, GEUS J W, DE JONG K P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation[J]. J Catal,2006,237(2):291−302. doi: 10.1016/j.jcat.2005.11.015
    [18]
    OKABE K, LI X, WEI M, ARAKAWA H. Fischer-Tropsch synthesis over Co-SiO2 catalysts prepared by the sol-gel method[J]. Catal Today,2004,89(4):431−438. doi: 10.1016/j.cattod.2004.01.005
    [19]
    MUNNIK P, DE JONGH P E, DE JONG K P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2014,136(20):7333−7340. doi: 10.1021/ja500436y
    [20]
    MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Adv Mater,2011,23(2):249−267. doi: 10.1002/adma.201002854
    [21]
    LONG J R, YAGHI O M. The pervasive chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1213−1214. doi: 10.1039/b903811f
    [22]
    HUANG Y B, LIANG J, WANG X S, CAO R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions[J]. Chem Soc Rev,2017,46(1):126−157. doi: 10.1039/C6CS00250A
    [23]
    CORMA A, GARCIA H, LLABRÉS I XAMENA F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem Rev,2010,110(8):4606−4655. doi: 10.1021/cr9003924
    [24]
    JAGADEESH R V, MURUGESAN K, ALSHAMMARI A S, NEUMANN H, POHL M M, RADNI J, BELLER M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines[J]. Science,2017,358(6361):326−332. doi: 10.1126/science.aan6245
    [25]
    QIU B, YANG C, GUO W, XU Y, LIANG Z, MA D, ZOU R. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. J Mater Chem A,2017,5(17):8081−8086. doi: 10.1039/C7TA02128C
    [26]
    CHEN Y, LI X, NISA M U, LV J, LI Z. ZIF-67 as precursor to prepare high loading and dispersion catalysts for Fischer-Tropsch synthesis: Particle size effect[J]. Fuel,2019,241:802−812. doi: 10.1016/j.fuel.2018.12.085
    [27]
    LUO Q X, GUO L P, YAO S Y, BAO J, LIU Z T, LIU Z W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis[J]. J Catal,2019,369:143−156. doi: 10.1016/j.jcat.2018.11.002
    [28]
    PEI Y, LI Z, LI Y. Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE J,2017,63(7):2935−2944. doi: 10.1002/aic.15677
    [29]
    ZHANG C, GUO X, YUAN Q, ZHANG R. CHANG Q, LI K, XIAO B, LIU S, MA C, LIU X, XU Y, WEN X, YANG Y, LI Y. Ethyne-reducing metal-organic frameworks to control fabrications of core/shell nanoparticles as catalysts[J]. ACS Catal,2018,8(8):7120−7130. doi: 10.1021/acscatal.8b01691
    [30]
    SUN X, OLIVOS-SUAREZ A I, MEIJERINK M, VAN DEELEN T, OULD-CHIKH S, ZECEVIC J, DE JONG K P, KAPTEIJN F, GASCON J. ́Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework[J]. Nat Commun,2017,8(1):1680−1687. doi: 10.1038/s41467-017-01910-9
    [31]
    KAYE S S, DAILLY A, YAGHI O M, LONG J R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5)[J]. J Am Chem Soc,2007,129(46):14176−14177. doi: 10.1021/ja076877g
    [32]
    JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2016,6(1):100−114. doi: 10.1021/acscatal.5b02205
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return