Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
MA Xiao-tong, WANG Zhi-gang, LU Hao, ZHUANG Shu-juan, WANG Yan-xia, LIU Wei, ZHAO Jiang-shan, KONG Ling-xue. Study on effect of furfural residue addition on fusion characteristics of gasification coal ash[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X
Citation: MA Xiao-tong, WANG Zhi-gang, LU Hao, ZHUANG Shu-juan, WANG Yan-xia, LIU Wei, ZHAO Jiang-shan, KONG Ling-xue. Study on effect of furfural residue addition on fusion characteristics of gasification coal ash[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X

Study on effect of furfural residue addition on fusion characteristics of gasification coal ash

doi: 10.1016/S1872-5813(23)60355-X
Funds:  The project was supported by the Natural Science Foundation of ShanDong Province (ZR2020KB014,ZR2022QB206)
  • Received Date: 2023-01-18
  • Accepted Date: 2023-03-02
  • Rev Recd Date: 2023-03-02
  • Available Online: 2023-04-06
  • Publish Date: 2023-10-10
  • The co-gasification of furfural residue with coal is a feasible way to realize its clean and efficient utilization, but there is a high content of alkaline components in the furfural residue ash. Therefore, the effect of furfural residue addition on the fusion temperature of gasification coal ash was investigated, in which a typical furfural residue and two gasification coals with different ratios of silicon to aluminum (Si/Al) were selected. X-ray diffraction instrument (XRD) was used to measure the mineral evolution of co-gasification ash at different temperatures. The phase change in equilibrium state was calculated by the software FactSage. The results show that with the increase in furfural residue addition ratio, the fusion temperatures of both gasification coal ashes first increase and then decrease, while the increase trend of fusion temperatures for the coal with a high Si/Al ratio is more significant. When the furfural residue is added, the resulting high melting point mineral of gasification slag is changed from anorthite (CaAl2Si2O8) to leucite (KAlSi2O6) that is still present as a solid phase at 1300 ℃, resulting in an increase of AFTs. The coal ash with more amount of SiO2 can react with K2O to produce more leucite (KAlSi2O6) with a higher fusion point, thus causing the ash fusion temperatures to rise. However, as the ratio of furfural residue addition continues to increase, the ash fusion temperatures decrease, which is attributed to the formation of kaliophilite (KAlSiO4) with a low fusion point that is generated in the presence of higher content of K2O.
  • loading
  • [1]
    BI S X, LIU W Y, WANG C H, ZHAN H J. A versatile approach to the synthesis of biomass derived from furfural residues as a potential adsorbent[J]. J Environ Chem Eng,2018,6(4):5049−5052. doi: 10.1016/j.jece.2018.07.038
    [2]
    冯亭杰, 张杰, 张诗仪. 我国糠醛生产技术进展及市场分析[J]. 河南化工,2019,36(9):7−10.

    FENG Ting-jie, ZHANG Jie, ZHANG Shi-yi. Technical progress and market analysis of furfural production in China[J]. Henan Chem Ind,2019,36(9):7−10.
    [3]
    朱性贵, 张本峰, 朱迎红, 范子久. 生物质(糠醛渣)循环流化床锅炉的开发应用及优化[J]. 中氮肥,2020,1:56−58 + 62. doi: 10.3969/j.issn.1004-9932.2020.01.018

    ZHU Xing-gui, ZHANG Ben-feng, ZHU Ying-hong, FAN Zi-jiu. Development, application and optimization of biomass (furfural residue) circulating fluidized bed boiler[J]. M-Sized Nitro Fer Prog,2020,1:56−58 + 62. doi: 10.3969/j.issn.1004-9932.2020.01.018
    [4]
    付伟贤. 中国气流床气化技术现状及发展趋势[J]. 化工管理,2020,13:79−81. doi: 10.3969/j.issn.1008-4800.2020.13.043

    FU Wei-xian. Status quo and development trend of entrained flow gasification technology in China[J]. Chem manage,2020,13:79−81. doi: 10.3969/j.issn.1008-4800.2020.13.043
    [5]
    戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工,2009,37(4):16−19. doi: 10.3969/j.issn.1005-9598.2009.04.005

    DAI Ai-jun, DU Yan-xue, XIE Xin-xin. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chem Ind,2009,37(4):16−19. doi: 10.3969/j.issn.1005-9598.2009.04.005
    [6]
    孔令学, 白进, 李文, 白宗庆, 郭振兴. 氧化钙含量对灰渣流体性质影响的研究[J]. 燃料化学学报,2011,39(6):407−412. doi: 10.3969/j.issn.0253-2409.2011.06.002

    KONG Ling-xue, BAI Jin, LI Wen, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. J Fuel Chem Technol,2011,39(6):407−412. doi: 10.3969/j.issn.0253-2409.2011.06.002
    [7]
    CAI B L, LI H X, ZHAO S X, SUN H G, LI P T. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceram Int,2018,44(5):4592−4602. doi: 10.1016/j.ceramint.2017.11.023
    [8]
    ZHAO Y L, ZHANG Y M, BAO S X, CHEN T Y, LIU X. Effect of stone coal chemical composition on sintering behavior during roasting[J]. Ind Eng Chem Res,2014,53(1):157−163. doi: 10.1021/ie4022144
    [9]
    DYK J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Miner Eng,2006,19(3):280−286. doi: 10.1016/j.mineng.2005.06.018
    [10]
    XIAO H P, QI C, CHENG Q Y, DOU C Z, RU Y. Effect of sodium-containing sulfates on ash fusibility[J]. Energy Fuels,2018,32(9):9908−9915. doi: 10.1021/acs.energyfuels.8b01798
    [11]
    曹琴, 黄胜, 吴诗勇, 吴幼青, 高晋生. 生物质中矿物质在气化条件下的演变行为研究[J]. 燃料化学学报,2016,44(6):668−673.

    CAO Qin, HUANG Sheng, WU Shi-yong, WU You-ging, GAO Jin-sheng. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. J Fuel Chem Technol,2016,44(6):668−673.
    [12]
    ZHANG L M, WANG J F, SONG X D, BAI Y H, MIN Y. Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash[J]. Fuel,2020,282:118876. doi: 10.1016/j.fuel.2020.118876
    [13]
    唐建业, 陈雪莉, 乔治, 刘爱彬, 王辅臣. 添加秸秆类生物质对长平煤灰熔融特性的影响[J]. 化工学报,2014,65(12):4948−4957.

    TANG Jian-ye, CHEN Xue-li, QIAO Zhi, LIU Ai-bin, WANG Fu-chen. Influence of agro-biomass addition on Changping coal ash melting characteristics[J]. CIESC J,2014,65(12):4948−4957.
    [14]
    马修卫, 李风海, 马名杰, 房倚天. 长治煤与生物质混合灰熔融特性研究[J]. 燃料化学学报,2018,46(2):129−137. doi: 10.1016/S1872-5813(18)30007-0

    MA Xiu-wei, LI Feng-hai, MA Ming-jie, FANG Yi-tian. Fusion characteristics of blended ash from Changzhi coal and biomass[J]. J Fuel Chem Technol,2018,46(2):129−137. doi: 10.1016/S1872-5813(18)30007-0
    [15]
    李晓明, 张红, 智丽飞. 碱金属K对无烟煤煤灰熔融性的影响规律[J]. 热科学与技术,2019,18(6):483−489.

    LI Xiao-ming, ZHANG Hong, ZHI Li-fei. Effect of alkali metal K on the fusibility of anthracite ash[J]. J Therm Sci Tech-Jpn,2019,18(6):483−489.
    [16]
    李洪涛, 徐有宁, 黄景立, 纪桂英. 生物质与煤混烧灰的熔融性实验研究[J]. 锅炉制造,2011,1(1):48−50. doi: 10.3969/j.issn.1674-1005.2011.01.015

    LI Hong-tao, XU You-ning, HUANG Jing-li, JI Gui-ying. Experiment study on ash fusing character during Co-firing of coal and biomass[J]. Boiler Manu,2011,1(1):48−50. doi: 10.3969/j.issn.1674-1005.2011.01.015
    [17]
    XU J, SONG X D, YU G S, DU C H. Investigating the effect of flux on ash fusibility of high-calcium coal[J]. ACS Omega,2020,5(20):11361−11368. doi: 10.1021/acsomega.0c00320
    [18]
    胡云鹏, 程世庆, 谢敬思, 程琦雯, 张慧敏. 梧桐木与烟煤混烧的灰分特性分析[J]. 燃料化学学报,2012,40(3):286−292. doi: 10.3969/j.issn.0253-2409.2012.03.006

    HU Yun-peng, CHENG Shi-qing, XIE Jing-si, CHENG Qi-wen, ZHANG Hui-min. Analysis of the ash characteristic during cofiring of platane wood and bitumite[J]. J Fuel Chem Technol,2012,40(3):286−292. doi: 10.3969/j.issn.0253-2409.2012.03.006
    [19]
    LIU Y J, YAN T G, AN Y, ZHANG W, DONG Y. Influence of water leaching on alkali-induced slagging properties of biomass straw[J]. J Fuel Chem Technol,2021,49(12):1839−1850. doi: 10.1016/S1872-5813(21)60147-0
    [20]
    ZHANG L M, WEI J T, SONG X D, SU W G. Investigation on coal ash fusibility and fluidity during the co-gasification of coal and coal indirect liquefaction residue[J]. Fuel Process Technol,2021,221:106949. doi: 10.1016/j.fuproc.2021.106949
    [21]
    吴锁贞, 伦飞, 屠卡滨, 王庆松, 程健林, 张洪. 晋城煤粉中硫的形态、分布及对煤灰熔融性影响的研究[J]. 燃料化学学报,2020,48(6):649−654. doi: 10.3969/j.issn.0253-2409.2020.06.002

    WU Suo-zhen, LUN Fei, TU Ka-bin, WANG Qing-song, CHENG Jian-lin, ZHANG Hong. Form and distribution of sulfur in pulverized Jincheng coal and their influence on its ash fusibility[J]. J Fuel Chem Technol,2020,48(6):649−654. doi: 10.3969/j.issn.0253-2409.2020.06.002
    [22]
    王立群, 许超杰, 白文斌, 陈冲. 甘蔗渣与煤共气化试验研究[J]. 重庆理工大学学报,2016,30(6):70−74. doi: 10.3969/j.issn.1674-8425(z).2016.06.013

    WANG Li-qun, XU Chao-jie, BAI Wen-bin, CHEN Chong. Experiment of Co-gasification of sugarcane bagasse and coal[J]. J Chongqing Univ Technol,2016,30(6):70−74. doi: 10.3969/j.issn.1674-8425(z).2016.06.013
    [23]
    李平, 梁钦锋, 刘霞, 龚欣. 酸碱比值与助熔剂对煤灰熔融流动温度影响的研究[J]. 大氮肥,2010,33(2):107−111. doi: 10.3969/j.issn.1002-5782.2010.02.012

    LI Ping, LIANG Qin-feng, LIU Xia, GONG Xin. Study on the Influence of acid base ratio and flux on the melting flow temperature of coal ash[J]. Large Scale Nitro Fer Ind,2010,33(2):107−111. doi: 10.3969/j.issn.1002-5782.2010.02.012
    [24]
    周言. 煤和生物质灰熔融特性及对耐火材料侵蚀机理研究[D]. 镇江: 江苏大学, 2020.

    ZHOU Yan. Study on the melting characteristics of coal and biomass ash and corrosion mechanism of refractory[D]. Zhenjiang: Jiangsu University, 2020.
    [25]
    YAN T, BAI J, KONG L X, BAI Z Q, LI W. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel,2017,193(1):275−283.
    [26]
    WANG J J, LIU X, GUO Q H, WEI J T, CHEN X L. Application of biomass leachate in regulating the fusibility of coal ash[J]. Fuel,2020,268(15):117338.
    [27]
    WEI J T, GONG Y, GUO Q H, CHEN X L, DING L. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renewable Energy,2019,131:597−605. doi: 10.1016/j.renene.2018.07.075
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (424) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return