Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
GAO Pan, HUANG Xing-qi, LIU Yu-tong, ABULAITI Aikeremu, YANG Shao-xia. Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1
Citation: GAO Pan, HUANG Xing-qi, LIU Yu-tong, ABULAITI Aikeremu, YANG Shao-xia. Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1

Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers

doi: 10.1016/S1872-5813(23)60356-1
Funds:  The project was supported by the National Natural Science Foundation of China (51206045) and the Fundamental Research Funds for Central Universities (2018MS033)
  • Received Date: 2023-01-15
  • Accepted Date: 2023-03-08
  • Rev Recd Date: 2023-03-05
  • Available Online: 2023-04-06
  • Publish Date: 2023-09-30
  • The chemical looping gasification (CLG) kinetics of biochars with calcium ferrite as oxygen carriers and the effects of different kinds of calcium ferrite and biochars were investigated by TGA. The properties of biochars and calcium ferrite were analyzed by XRD, SEM, BET, etc. The Škvára-Šesták method was used to determine the kinetic mechanism function. The results show that the reduction reaction rate and the oxygen carrying capacity of oxygen carriers follow the sequence: Ca2Fe2O5 > CaFe2O4 > Fe2O3, and CaFe2O4 > Ca2Fe2O5 > Fe2O3, respectively. The oxygen carriers can be completely reduced to Fe and CaO by biochar. The activation energy of CaFe2O4 reduction is in the range of 167.44–600.83 kJ/mol; and the activation energy of Ca2Fe2O5 reduction is in the range of 413.62–583.51 kJ/mol. The CaFe3O5 generated during the reduction of CaFe2O4 may have a negative influence on the lattice oxygen diffusion. The reduction of CaFe2O4 can be divided into two stages: when the conversion degree α is less than 0.15, the CaFe2O4 is reduced to Ca2Fe2O5 following the random nucleation and nuclei growth model; when α is greater than 0.15, Ca2Fe2O5 is further reduced to CaO and Fe following the 3-D diffusion mechanism. The mechanism function of the reduction of Ca2Fe2O5 is the same as that of the second stage of CaFe2O4 reduction.
  • loading
  • [1]
    SUN Z, LIU H P, BAI H C, YU S F, RUSSELL C K, ZENG L, SUN Z Q. The crucial role of deoxygenation in syngas refinement and carbon dioxide utilization during chemical looping-based biomass gasification[J]. Chem Eng J,2022,428:132068. doi: 10.1016/j.cej.2021.132068
    [2]
    HUANG Z, HE F, FENG Y P, ZHAO K, ZHENG A Q, CHANG S, LI H B. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier[J]. Bioresour Technol,2013,140:138−145. doi: 10.1016/j.biortech.2013.04.055
    [3]
    GUO Q, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res,2014,53(1):78−86. doi: 10.1021/ie401568x
    [4]
    KELLER M, FUNG J, LEION H, MATTISSON T. Cu-impregnated alumina/silica bed materials for chemical looping reforming of biomass gasification gas[J]. Fuel,2016,180:448−456. doi: 10.1016/j.fuel.2016.04.024
    [5]
    戴金鑫, 刘晶, 刘丰. 化学链燃烧中H2S对NiFe2O4氧载体活性的影响机理[J]. 化工学报,2017,68(3):1163−1169.

    DAI Jin-xin, LIU Jing, LIU Feng. Influence mechanism of H2S on reactivity of NiFe2O4 oxygen carriers for chemical looping combustion[J]. CIESC J,2017,68(3):1163−1169.
    [6]
    WANG B W, LI J, DING N, MEI D F, ZHAO H B, ZHENG C G. Chemical looping combustion of a typical lignite with a CaSO4-CuO mixed oxygen carrier[J]. Energy Fuels,2017,31(12):13942−13954. doi: 10.1021/acs.energyfuels.7b02584
    [7]
    LI Y, LI Z S, LIU L, CAI N S. Measuring the fast oxidation kinetics of a manganese oxygen carrier using microfluidized bed thermogravimetric analysis[J]. Chem Eng J,2020,385:123970. doi: 10.1016/j.cej.2019.123970
    [8]
    LI F, KIM H R, SRIDHAR D, WANG F, ZENG L, CHEN J, FAN L S. Syngas chemical looping gasification process: Oxygen carrier particle selection and performance[J]. Energy Fuels,2009,23(8):4182−4189. doi: 10.1021/ef900236x
    [9]
    LUO M, YI Y, WANG S, WANG Z L, DU M, PAN J F, WANG Q. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev,2018,81:3186−3214. doi: 10.1016/j.rser.2017.07.007
    [10]
    DHARANIPRAGADA N, BUELENS L C, POELMAN H, GRAVEB E D, GALVITAA V V, MARIN G B. Mg-Fe-Al-O for advanced CO2 to CO conversion: Carbon monoxide yield vs. oxygen storage capacity[J]. J Mater Chem A,2015,3:16251−16262. doi: 10.1039/C5TA02289D
    [11]
    WANG B W, YAN R, ZHAO H B, ZHENG Y, LIU Z H, ZHENG C G. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier[J]. Energy Fuels,2011,25(7):3344−3354. doi: 10.1021/ef2004078
    [12]
    EVDOU A, ZASPALIS V, NALBANDIAN L. Ferrites as redox catalysts for chemical looping processes[J]. Fuel,2016,165:367−378. doi: 10.1016/j.fuel.2015.10.049
    [13]
    HIRABAYASHI D, SAKAI Y, YOSHIKAWA T, MOCHIZUKI K, KOJIMA Y, SUZUKI K, OHSHITA K, WATANABE Y. Mössbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO[J]. Hyperfine Interact,2006,167:809−813. doi: 10.1007/s10751-006-9362-x
    [14]
    ISMAIL M, LIU W, SCOTT S A. The performance of Fe2O3-CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production[J]. Energy Procedia,2014,63:87−97. doi: 10.1016/j.egypro.2014.11.010
    [15]
    SIRIWARDANE R, RILEY J, TIAN H, RICHARDS G. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid-solid reactions[J]. Appl Energy,2016,165:952−966. doi: 10.1016/j.apenergy.2015.12.085
    [16]
    ZHANG J Z, HE T, WANG Z Q, ZHU M, ZHANG K, LI B, WU J H. The search of proper oxygen carriers for chemical looping partial oxidation of carbon[J]. Appl Energy,2017,190:1119−1125. doi: 10.1016/j.apenergy.2017.01.024
    [17]
    SUN Z, WU X D, RUSSELL C K, DYAR M D, SKLUTE E C, TOAN S, FAN M H, DUAN L B, XIANG W G. Synergistic enhancement of chemical looping-based CO2 splitting with biomass cascade utilization using cyclic stabilized Ca2Fe2O5 aerogel[J]. J Mater Chem A,2019,7(3):1216−1226. doi: 10.1039/C8TA10277E
    [18]
    WEI G Q, FENG J, HOU Y L, LI F Z, LI W Y, HUANG Z, ZHENG A Q, LI H B. Ca-enhanced hematite oxygen carriers for chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting[J]. Fuel,2021,285(6):119−125.
    [19]
    WANG L, LIN Y, HUANG Z, ZENG K, HUANG H Y. Conversion of carbon dioxide to carbon monoxide: Two-step chemical looping dry reforming using Ca2Fe2O5-Zr0.5Ce0.5O2 composite oxygen carriers[J]. Fuel,2022,322:124182. doi: 10.1016/j.fuel.2022.124182
    [20]
    ABAD A, ADÁNEZ J, LABIANO F G, DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci,2007,62:533−549. doi: 10.1016/j.ces.2006.09.019
    [21]
    RILEY J, SIRIWARDANE R, TIAN H, BENINCOSA W, POSTON J. Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer[J]. Appl Energy,2017,201:94−110. doi: 10.1016/j.apenergy.2017.05.101
    [22]
    LI G, LV X W, DING C Y, ZHOU X G, ZHONG D P, QIU G B. Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications[J]. Appl Energy,2020,262:114604. doi: 10.1016/j.apenergy.2020.114604
    [23]
    CHEN L Y, BAO J H, KONG L, COMBS M, NIKOLIC H S, FAN Z, LIU K L. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Appl Energy,2016,184:9−18. doi: 10.1016/j.apenergy.2016.09.085
    [24]
    ZHANG Y, SONG K Y. Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere[J]. Energy,2018,165:235−245.
    [25]
    XU J J, ZUO H B, WANG G W, ZHANG J L, GUO K, LIANG W. Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM)[J]. Appl Therm Eng,2019,152:605−614. doi: 10.1016/j.applthermaleng.2019.02.104
    [26]
    ŠKVÁRA F, ŠESTÁK J J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method[J]. J Therm Anal,1975,8(3):477−489. doi: 10.1007/BF01910127
    [27]
    杨正红, THOMMES Mattias. 气体吸附法进行孔径分析进展—密度函数理论(DFT)及蒙特卡洛法(MC)的应用[J]. 中国粉体技术,2005,11:62−66.

    YANG Zheng-hong, THOMMES Mattias. Progress in pore size analysis by adsorption method-application of Density function Theory (DFT) and Monte Carlo method (MC)[J]. China Powder Sci Technol,2005,11:62−66.
    [28]
    LI L W, HUANG Y Q, ZHANG D Y, ZHENG A Q, ZHAO Z L, XIA M Z, LI H B. Uncovering structure-reactivity relationships in pyrolysis and gasification of biomass with varying severity of torrefaction[J]. ACS Sustainable Chem Eng,2018,6(5):6008−6017. doi: 10.1021/acssuschemeng.7b04649
    [29]
    MATTHEWS M, PIMENTA M, DRESSELHAUS G, DRESSELHAUS M S, ENDO M. Origin of dispersive effects of the Raman D band in carbon materials[J]. Phys Rev B,1999,59:R6585−R6588. doi: 10.1103/PhysRevB.59.R6585
    [30]
    SUN Z, CHEN S Y, HU J, CHEN A, RONY A H, RUSSELL C K, XIANG W G, FAN M H, DYAR M. D, DKLUTE E C. Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process[J]. Appl Energy,2018,211:431−442. doi: 10.1016/j.apenergy.2017.11.005
    [31]
    姚娜. 生物质快速热解特性试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    YAO Na. Experimental study on the behavior of biomass fast pyrolysis[D]. Harbin: Harbin Institute of Technology, 2008.
    [32]
    杜胜磊. 生物质热化学利用过程中无机矿物质转化规律及灰熔融特性研究[D]. 武汉: 华中科技大学, 2014.

    DU Sheng-lei. Fundamental study on transformation behavior of inorganic components during thermochemical conversion of biomass and ash fusion characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2014.
    [33]
    JABER J O, PROBERT S D. Pyrolysis and gasification kinetics of Jordanian oil-shales[J]. Appl Energy,1999,63(4):269−286. doi: 10.1016/S0306-2619(99)00033-1
    [34]
    LAKRA R, KIRAN M S, USHA R, MOHAN R, SUNDARESAN R, KORRAPATI P S. Enhanced stabilization of collagen by furfural[J]. Int J Biol Macromol,2014,65:252−257. doi: 10.1016/j.ijbiomac.2014.01.040
    [35]
    LIU L, LI Z S, WANG Y, LI Z A, LARRING Y, CAI N S. Industry-scale production of a perovskite oxide as oxygen carrier material in chemical looping[J]. Chem Eng J,2021,431:134006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (356) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return