Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIAO Duo-hua, YANG Liang, SONG Geng-zhe, MA Xue-dong, LI Shuang. CO2-assisted oxidative dehydrogenation of ethane to ethylene over the ZnO-ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1421-1431. doi: 10.1016/S1872-5813(23)60360-3
Citation: LIAO Duo-hua, YANG Liang, SONG Geng-zhe, MA Xue-dong, LI Shuang. CO2-assisted oxidative dehydrogenation of ethane to ethylene over the ZnO-ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1421-1431. doi: 10.1016/S1872-5813(23)60360-3

CO2-assisted oxidative dehydrogenation of ethane to ethylene over the ZnO-ZrO2 catalyst

doi: 10.1016/S1872-5813(23)60360-3
Funds:  The project was supported by the National Natural Science Foundation of China (21878244).
More Information
  • Corresponding author: E-mail: shuangli722@126.com
  • Received Date: 2023-01-05
  • Accepted Date: 2023-03-13
  • Rev Recd Date: 2023-03-02
  • Available Online: 2023-04-13
  • Publish Date: 2023-10-10
  • The ZnO-ZrO2 catalyst was prepared by the deposition-precipitation method using ZrO2 as the carrier obtained from calcining commercial zirconium hydroxide (Zr(OH)4). And the catalytic performance was evaluated at 873 K in CO2-assisted ethane oxidative dehydrogenation reaction (CO2-ODHE). The physical-chemical properties and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectra (XPS), CO2 temperature-programmed desorption (CO2-TPD). The results show that ZnO were doped into the surface lattice of ZrO2 on the 5%ZnO-ZrO2 catalyst, generating highly dispersed ZnO species and oxygen-deficient regions on catalyst surface. 5%ZnO-ZrO2 catalyst could selectively breaking C−H bond instead of C−C bond, delivering excellent catalytic performance. 210 μmol/(gcat·min) of C2H4 formation rate could compare favorably with the data reported on noble metal and transition metal carbides. Additionally, the possible mechanism is discussed.
  • loading
  • [1]
    SCHARFE M, LIRA-PARADA P A, AMRUTE A P, MITCHELL S, PÉREZ-RAMÍREZ J. Lanthanide compounds as catalysts for the one-step synthesis of vinyl chloride from ethylene[J]. J Catal,2016,344:524−534. doi: 10.1016/j.jcat.2016.10.026
    [2]
    WANG Y-C, CHENG P-Y, ZHANG Z-Q, FAN K-X, LU R-Q, ZHANG S, WU Y-X. Highly efficient terpolymerizations of ethylene/propylene/ENB with a half-titanocene catalytic system[J]. Polym Chem,2021,12(44):6417−6425. doi: 10.1039/D1PY01140E
    [3]
    BIKBAEVA V, NESTERENKO N, KONNOV S, NGUYEN T-S, GILSON J-P, VALTCHEV V. A low carbon route to ethylene: Ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst[J]. Appl Catal B: Environ,2023,320:122011. doi: 10.1016/j.apcatb.2022.122011
    [4]
    SANFILIPPO D, MIRACCA I. Dehydrogenation of paraffins: Synergies between catalyst design and reactor engineering[J]. Catal Today,2006,111(1):133−139.
    [5]
    TIAN H, XU B. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C–H bond activation and mechanistic investigations[J]. Chin J Catal,2022,43(8):2173−2182. doi: 10.1016/S1872-2067(21)64042-1
    [6]
    ZHOU Y, LIN J, LI L, PAN X, SUN X, WANG X. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene[J]. J Catal,2018,365:14−23. doi: 10.1016/j.jcat.2018.05.023
    [7]
    ZHOU Y, LIN J, LI L, TIAN M, LI X, PAN X, CHEN Y, WANG X. Improving the selectivity of Ni-Al mixed oxides with isolated oxygen species for oxidative dehydrogenation of ethane with nitrous oxide[J]. J Catal,2019,377:438−448. doi: 10.1016/j.jcat.2019.07.050
    [8]
    XIE Z, TIAN D, XIE M, YANG S-Z, XU Y, RUI N, LEE J H, SENANAYAKE S D, LI K, WANG H, KATTEL S, CHEN J G. Interfacial active sites for CO2 assisted selective cleavage of C–C/C–H bonds in ethane[J]. Chem,2020,6(10):2703−2716. doi: 10.1016/j.chempr.2020.07.011
    [9]
    PAN Z-H, WENG Z-Z, KONG X-J, LONG L-S, ZHENG L-S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion[J]. Coord Chem Rev,2022,457:214419. doi: 10.1016/j.ccr.2022.214419
    [10]
    GALADIMA A, MURAZA O. Catalytic thermal conversion of CO2 into fuels: Perspective and challenges[J]. Renewable Sustainable Energy Rev,2019,115:109333. doi: 10.1016/j.rser.2019.109333
    [11]
    CHEN J G. Electrochemical CO2 reduction via low-valent nickel single-atom catalyst[J]. Joule,2018,2(4):587−589. doi: 10.1016/j.joule.2018.03.018
    [12]
    JALID F, KHAN T S, HAIDER M A. CO2 reduction and ethane dehydrogenation on transition metal catalysts: Mechanistic insights, reactivity trends and rational design of bimetallic alloys[J]. Catal Sci Technol,2021,11(1):97−115. doi: 10.1039/D0CY01290D
    [13]
    GAMBO Y, ADAMU S, TANIMU G, ABDULLAHI I M, LUCKY R A, BA-SHAMMAKH M S, HOSSAIN M M. CO2-mediated oxidative dehydrogenation of light alkanes to olefins: Advances and perspectives in catalyst design and process improvement[J]. Appl Catal A: Gen,2021,623:118273. doi: 10.1016/j.apcata.2021.118273
    [14]
    XIE Z, WANG X, CHEN X, LIU P, CHEN J G. General descriptors for CO2-assisted Selective C–H/C–C bond scission in ethane[J]. J Am Chem Soc,2022,144(9):4186−4195. doi: 10.1021/jacs.1c13415
    [15]
    LI G, LIU C, CUI X, YANG Y, SHI F. Oxidative dehydrogenation of light alkanes with carbon dioxide[J]. Green Chem,2021,23(2):689−707. doi: 10.1039/D0GC03705B
    [16]
    DENG S, LI S, LI H, ZHANG Y. Oxidative dehydrogenation of ethane to ethylene with CO2 over Fe-Cr/ZrO2 catalysts[J]. Ind Eng Chem Res,2009,48(16):7561−7566. doi: 10.1021/ie9007387
    [17]
    NUMAN M, EOM E, LI A, MAZUR M, CHA H W, HAM H C, JO C, PARK S-E. Oxidative dehydrogenation of ethane with CO2 as a soft oxidant over a PtCe bimetallic catalyst[J]. ACS Catal,2021,11(15):9221−9232. doi: 10.1021/acscatal.1c01156
    [18]
    GAO Y, NEAL L, DING D, WU W, BAROI C, GAFFNEY A M, LI F. Recent advances in intensified ethylene production—A review[J]. ACS Catal,2019,9(9):8592−8621. doi: 10.1021/acscatal.9b02922
    [19]
    HAN S, ZHAO D, OTROSHCHENKO T, LUND H, BENTRUP U, KONDRATENKO V A, ROCKSTROH N, BARTLING S, DORONKIN D E, GRUNWALDT J-D, RODEMERCK U, LINKE D, GAO M, JIANG G, KONDRATENKO E V. Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation[J]. ACS Catal,2020,10(15):8933−8949. doi: 10.1021/acscatal.0c01580
    [20]
    LIU J, HE N, ZHANG Z, YANG J, JIANG X, ZHANG Z, SU J, SHU M, SI R, XIONG G, XIE H-B, VILÉ G. Highly-dispersed zinc species on zeolites for the continuous and selective dehydrogenation of ethane with CO2 as a soft oxidant[J]. ACS Catal,2021,11(5):2819−2830. doi: 10.1021/acscatal.1c00126
    [21]
    BUGROVA T A, DUTOV V V, SVETLICHNYI V A, CORTÉS CORBERÁN V, MAMONTOV G V. Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2[J]. Catal Today,2019,333:71−80. doi: 10.1016/j.cattod.2018.04.047
    [22]
    LI X, YANG Z, ZHANG L, HE Z, YAN Y, RAN J, KADIROVA Z C. Influence of ZrO2 crystal structure on the catalytic performance of Fe-Ni catalysts for CO2-assisted ethane dehydrogenation reaction[J]. Fuel,2022,322:124122. doi: 10.1016/j.fuel.2022.124122
    [23]
    RORRER J E, TOSTE F D, BELL A T. Mechanism and kinetics of isobutene formation from ethanol and acetone over ZnxZryOz[J]. ACS Catal,2019,9(12):10588−10604. doi: 10.1021/acscatal.9b03045
    [24]
    YANG G-Q, HE Y-J, SONG Y-H, WANG J, LIU Z-T, LIU Z-W. Oxidative dehydrogenation of propane with carbon dioxide catalyzed by ZnxZr1–xO2–x solid solutions[J]. Ind Eng Chem Res,2021,60(49):17850−17861. doi: 10.1021/acs.iecr.1c03476
    [25]
    ZHU H, ROSENFELD D C, HARB M, ANJUM D H, HEDHILI M N, OULD-CHIKH S, BASSET J-M. Ni-M-O (M = Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane[J]. ACS Catal,2016,6(5):2852−2866. doi: 10.1021/acscatal.6b00044
    [26]
    SALUSSO D, BORFECCHIA E, BORDIGA S. Combining X-ray diffraction and X-ray absorption spectroscopy to unveil Zn local environment in Zn-doped ZrO2 catalysts[J]. J Phys Chem C,2021,125(40):22249−22261. doi: 10.1021/acs.jpcc.1c06202
    [27]
    TADA S, OCHIAI N, KINOSHITA H, YOSHIDA M, SHIMADA N, JOUTSUKA T, NISHIJIMA M, HONMA T, YAMAUCHI N, KOBAYASHI Y, IYOKI K. Active sites on ZnxZr1–xO2–x solid solution catalysts for CO2-to-methanol hydrogenation[J]. ACS Catal,2022,12(13):7748−7759. doi: 10.1021/acscatal.2c01996
    [28]
    DEV G S, SHARMA V, SINGH A, BAGHEL V S, YANAGIDA M, NAGATAKI A, TRIPATHI N. Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model[J]. RSC Adv,2019,9(46):26956−26960. doi: 10.1039/C9RA04555D
    [29]
    BAYLON R A L, SUN J, KOVARIK L, ENGELHARD M, LI H, WINKELMAN A D, WANG Y. Structural identification of ZnxZryOz catalysts for Cascade aldolization and self-deoxygenation reactions[J]. Appl Catal B: Environ,2018,234:337−346. doi: 10.1016/j.apcatb.2018.04.051
    [30]
    CHEN H, CUI H, LV Y, LIU P, HAO F, XIONG W, LUO H A. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy[J]. Fuel,2022,314:123035. doi: 10.1016/j.fuel.2021.123035
    [31]
    SILVA-CALPA L D R, ZONETTI P C, RODRIGUES C P, ALVES O C, APPEL L G, DE AVILLEZ R R. The ZnxZr1−xO2−y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties[J]. J Mol Catal A: Chem,2016,425:166−173. doi: 10.1016/j.molcata.2016.10.008
    [32]
    SRIVASTAVA M, BERA P, BALARAJU J N, RAVISANKAR B. FESEM and XPS studies of ZrO2 modified electrodeposited NiCoCrAlY nanocomposite coating subjected to hot corrosion environment[J]. RSC Adv,2016,6(110):109083−109090. doi: 10.1039/C6RA20634D
    [33]
    LIU Y, XIA C, WANG Q, ZHANG L, HUANG A, KE M, SONG Z. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts[J]. Catal Sci Technol,2018,8(19):4916−4924. doi: 10.1039/C8CY01420E
    [34]
    BIESINGER M C, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Appl Surf Sci,2010,257(3):887−898. doi: 10.1016/j.apsusc.2010.07.086
    [35]
    WANG C, GARBARINO G, ALLARD L, WILSON F, BUSCA G, FLYTZANI-STEPHANOPOULOS M. Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx[J]. ACS Catal,2016,6(1):210−218. doi: 10.1021/acscatal.5b01593
    [36]
    HUANG C, WEN J, SUN Y, ZHANG M, BAO Y, ZHANG Y, LIANG L, FU M, WU J, YE D, CHEN L. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology[J]. Chem Eng J,2019,374:221−230. doi: 10.1016/j.cej.2019.05.123
    [37]
    SUN J, ZHU K, GAO F, WANG C, LIU J, PEDEN C, WANG Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites[J]. J Am Chem Soc,2011,133(29):11096−11099. doi: 10.1021/ja204235v
    [38]
    ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2020,10(1):302−310. doi: 10.1021/acscatal.9b04309
    [39]
    WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J,2016,293:327−336. doi: 10.1016/j.cej.2016.02.069
    [40]
    TIAN H, JIAO J, ZHA F, GUO X, TANG X, CHANG Y, CHEN H. Hydrogenation of CO2 into aromatics over ZnZrO–Zn/HZSM-5 composite catalysts derived from ZIF-8[J]. Catal Sci Technol,2022,12(3):799−811. doi: 10.1039/D1CY01570B
    [41]
    HARE B J, MAITI D, DAZA Y A, BHETHANABOTLA V R, KUHN J N. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures[J]. ACS Catal,2018,8(4):3021−3029. doi: 10.1021/acscatal.7b03941
    [42]
    XU Y, YU W, ZHANG H, XIN J, HE X, LIU B, JIANG F, LIU X. Suppressing C–C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34[J]. ACS Catal,2021,11(21):13001−13019. doi: 10.1021/acscatal.1c03382
    [43]
    PIDKO E A, VAN SANTEN R A. Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: A comprehensive DFT study[J]. J Phys Chem C,2007,111(6):2643−2655. doi: 10.1021/jp065911v
    [44]
    FAN H, NIE X, WANG H, JANIK M J, SONG C, GUO X. Mechanistic understanding of ethane dehydrogenation and aromatization over Zn/ZSM-5: Effects of Zn modification and CO2 co-reactant[J]. Catal Sci Technol,2020,10(24):8359−8373. doi: 10.1039/D0CY01566K
    [45]
    MYINT M, YAN B H, WAN J, ZHAO S, CHEN J G G. Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts[J]. J Catal,2016,343:168−177. doi: 10.1016/j.jcat.2016.02.004
    [46]
    WANG X, WANG Y, ROBINSON B, WANG Q, HU J. Ethane oxidative dehydrogenation by CO2 over stable CsRu/CeO2 catalyst[J]. J Catal,2022,413:138−149. doi: 10.1016/j.jcat.2022.06.021
    [47]
    YAO S Y, YAN B H, JIANG Z, LIU Z Y, WU QY, LEE J H, CHEN J G. Combining CO2 reduction with ethane oxidative dehydrogenation by oxygen-modification of molybdenum carbide[J]. ACS Catal,2018,8(6):5374−5381. doi: 10.1021/acscatal.8b00541
    [48]
    MARQUART W, RASEALE S, CLAEYS M, FISCHER N. Promoted MoxCy-based catalysts for the CO2 oxidative dehydrogenation of ethane[J]. ChemCatChem,2022,14(13):e202200267.
    [49]
    WAN T Y, JIN F, CHENG X J, GONG J H, WANG C Y, WU G Y, LIU A L. Influence of hydrophilicity and titanium species on activity and stability of Cr/MWW zeolite catalysts for dehydrogenation of ethane with CO2[J]. Appl Catal A: Gen,2022,637:118542. doi: 10.1016/j.apcata.2022.118542
    [50]
    LIU J X, ZHANG Z M, JIANG Y L, JIANG X, HE N, YAN S Y, GUO P, XIONG G, SU J, VILE G. Influence of the zeolite surface properties and potassium modification on the Zn-catalyzed CO2-assisted oxidative dehydrogenation of ethane[J]. Appl Catal B: Environ,2022,304:120947. doi: 10.1016/j.apcatb.2021.120947
    [51]
    LEI T Q, CHENG Y H, MIAO C X, HUA W M, YUE Y H, GAO Z. Silica-doped TiO2 as support of gallium oxide for dehydrogenation of ethane with CO2[J]. Fuel Process Technol,2018,177:246−254. doi: 10.1016/j.fuproc.2018.04.037
    [52]
    CHENG Y H, ZHANG F, ZHANG Y, MIAO C X, HUA W M, YUE Y H, GAO Z. Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite[J]. Chin J Catal,2015,36(8):1242−1248. doi: 10.1016/S1872-2067(15)60893-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (363) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return