Volume 51 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
YUAN Kai, JIA Xiang-yu, WANG Sen, FAN Sheng, HE Shi-pei, WANG Peng-fei, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5
Citation: YUAN Kai, JIA Xiang-yu, WANG Sen, FAN Sheng, HE Shi-pei, WANG Peng-fei, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5

Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins

doi: 10.1016/S1872-5813(23)60361-5
Funds:  The project was supported by the National Key R&D Program of China (2020YFA0210900), National Natural Science Foundation of China (U1910203, 21991090, 21991092, 22272195, U22A20431) and Youth Innovation Promotion Association CAS (2021172)
  • Received Date: 2023-03-08
  • Accepted Date: 2023-04-11
  • Rev Recd Date: 2023-04-10
  • Available Online: 2023-04-25
  • Publish Date: 2023-11-13
  • The catalytic performance of zeolites is closely related to their framework structure and a clear understanding of such a structure-performance relationship is of great significance in revealing catalytic reaction mechanism as well as in developing efficient zeolite catalysts. Herein, ZSM-11 and ZSM-5 zeolites with similar morphology, crystal size, textural properties and acidity were hydrothermally synthesized; the effects of their differences in the 10-ring channels on the catalytic performance in the conversion of methanol to olefins (MTO) were investigated by using various characterization techniques. The results indicate that in comparison with the straight channel of ZSM-11, the sinusoidal channel of ZSM-5 has stronger diffusion resistance, which promotes the hydrogen-transfer in higher olefins, leads to forming more polymethylbenzene species and then raises the contribution of aromatic-based cycle. In contrast, ZSM-11 with straight channel can reduce the formation of polymethylbenzene species and enhance the alkene-based cycle. As a result, compared with ZSM-5-60 with similar morphology and acidity, ZSM-11-60 as a catalyst in MTO exhibits longer lifetime (98.3 h vs. 65.4 h) and higher selectivity to propene (34.6% vs. 27.4%). The insight shown in this work helps to have a better understanding of the relation between zeolite structure and catalytic performance in MTO and is then beneficial to the development of better catalysts and processes for MTO.
  • loading
  • [1]
    CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal,1977,47(2):249−259. doi: 10.1016/0021-9517(77)90172-5
    [2]
    OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed,2012,51(24):5810−5831. doi: 10.1002/anie.201103657
    [3]
    TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [4]
    SHI J, WANG Y D, YANG W M, TANG Y, XIE Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chem Soc Rev,2015,44(24):8877−8903. doi: 10.1039/C5CS00626K
    [5]
    YARULINA I, CHOWDHURY A D, MEIRER F, WECKHUYSEN B M, GASCON J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat Catal,2018,1(6):398−411. doi: 10.1038/s41929-018-0078-5
    [6]
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [7]
    SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc,2006,128(46):14770−14771. doi: 10.1021/ja065810a
    [8]
    WANG Q, CUI Z M, CAO C Y, SONG W G. 0.3 Å makes the difference: Dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites[J]. J Phys Chem C,2011,115(50):24987−24992. doi: 10.1021/jp209182u
    [9]
    CHU Y Y, SUN X Y, YI X F, DING L H, ZHENG A M, DENG F. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. Catal Sci Technol,2015,5(7):3507−3517. doi: 10.1039/C5CY00312A
    [10]
    LIU Z Q, CHU Y Y, TANG X M, HUANG L, LI G C, YI X F, ZHENG A M. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. J Phys Chem C,2017,121(41):22872−22882. doi: 10.1021/acs.jpcc.7b07374
    [11]
    SHEN Y F, LE T T, FU D L, SCHMIDT J E, FILEZ M, WECKHUYSEN B M, RIMER J D. Deconvoluting the competing effects of zeolite framework topology and diffusion path length on methanol to hydrocarbons reaction[J]. ACS Catal,2018,8(12):11042−11053. doi: 10.1021/acscatal.8b02274
    [12]
    WANG S, WANG P F, QIN Z F, CHEN Y Y, DONG M, LI J F, ZHANG K, LIU P, WANG J G, FAN W B. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catal,2018,8(12):5485−5505.
    [13]
    YUAN K, JIA X Y, WANG S, FAN S, HE S P, WANG P F, QIN Z F, DONG M, FAN W B, WANG J G. Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins[J]. Microporous Mesoporous Mater,2022,341:112051. doi: 10.1016/j.micromeso.2022.112051
    [14]
    WANG S, LI Z K, QIN Z F, DONG M, LI J F, FAN W B, WANG J G. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion[J]. Chin J Catal,2021,42(7):1126−1136. doi: 10.1016/S1872-2067(20)63732-9
    [15]
    NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [16]
    CORMA A, FORNES V, FORNI L, MARQUEZ F, MARTINEZ-TRIGUERO J, MOSCOTTI D. 2, 6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. J Catal,1998,179(2):451−458. doi: 10.1006/jcat.1998.2233
    [17]
    GORA-MAREK K, TARACH K, CHOI M. 2, 6-Di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites[J]. J Phys Chem C,2014,118(23):12266−12274. doi: 10.1021/jp501928k
    [18]
    DEDECEK J, SOBALIK Z, WICHTERLOVA B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis[J]. Cat Rev-Sci Eng,2012,54(2):135−223. doi: 10.1080/01614940.2012.632662
    [19]
    LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6(11):7311−7325. doi: 10.1021/acscatal.6b01771
    [20]
    ZENG S, XU S T, GAO S S, GAO M B, ZHANG W N, WEI Y X, LIU Z M. Differentiating diffusivity in different channels of ZSM-5 zeolite by Pulsed Field Gradient (PFG) NMR[J]. ChemCatChem,2020,12(2):463−468. doi: 10.1002/cctc.201901689
    [21]
    MADEIRA F F, TAYEB K B, PINARD L, VEZIN H, MAURY S, CADRAN N. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A: Gen,2014,443-444:171−180.
    [22]
    WANG S, ZHANG L, LI S Y, QIN Z F, SHI D Z, HE S P, YUAN K, WANG P F, ZHAO T S, FAN S B, DONG M, LI J F, FAN W B, WANG J G. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins[J]. J Catal,2019,377:81−97. doi: 10.1016/j.jcat.2019.07.028
    [23]
    XUE Y F, LI J F, WANG P F, CUI X J, ZHENG H Y, NIU Y L, DONG M, QIN Z F, WANG J G, FAN W B. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins[J]. Appl Catal B: Environ,2021,280:119391. doi: 10.1016/j.apcatb.2020.119391
    [24]
    WANG C, WANG Q, XU J, QI G D, GAO P, WANG W Y, ZOU Y Y, FENG N D, LIU X L, DENG F. Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C–27Al solid-state NMR spectroscopy[J]. Angew Chem Int Ed,2016,55(7):2507−5511. doi: 10.1002/anie.201510920
    [25]
    PARK J W, KIM S J, SEO M, KIM S Y, SUGI Y, SEO G. Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions[J]. Appl Catal A: Gen,2008,349:76−85. doi: 10.1016/j.apcata.2008.07.006
    [26]
    WANG J B, WEI Y X, LI J Z, XU S T, ZHANG W N, HE Y L, CHEN J R, ZHANG M Z, ZHENG A M, DENG F, GUO X W, LIU Z M. Direct observation of methylcyclopentenyl cations (MCP + ) and olefin generation in methanol conversion over TON zeolite[J]. Catal Sci Technol,2016,6(1):89−97. doi: 10.1039/C5CY01420D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1478) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return