Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
TAN Chenchen, HAN Yuxuan, HU Yaqin, SHEN Kai, DING Shipeng, ZHANG Yaping. Preparation and NH3-SCR catalytic performance of CeTiOx catalysts with different pore structures[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 65-75. doi: 10.1016/S1872-5813(23)60369-X
Citation: TAN Chenchen, HAN Yuxuan, HU Yaqin, SHEN Kai, DING Shipeng, ZHANG Yaping. Preparation and NH3-SCR catalytic performance of CeTiOx catalysts with different pore structures[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 65-75. doi: 10.1016/S1872-5813(23)60369-X

Preparation and NH3-SCR catalytic performance of CeTiOx catalysts with different pore structures

doi: 10.1016/S1872-5813(23)60369-X
Funds:  The project was supported by National Key Research and Development Program of China (2021YFB3500604)
  • Received Date: 2023-04-16
  • Accepted Date: 2023-05-05
  • Rev Recd Date: 2023-04-28
  • Available Online: 2023-05-17
  • Publish Date: 2024-01-09
  • To investigate the influence of pore structure on the catalytic activity of catalysts, four catalysts including three-dimensionally ordered macroporous-mesoporous (3DOM-m) CeTiOx, three-dimensionally ordered macroporous (3DOM) CeTiOx, three-dimensionally ordered mesoporous (3DOm) CeTiOx and disordered mesoporous (DM) CeTiOx were synthesized by the sol-gel method. The NH3-SCR denitration testing results show that the performance of the catalysts with different pore structures follows the sequence of 3DOM-m CeTiOx>3DOm CeTiOx>3DOM CeTiOx>DM CeTiOx, and the 3DOM-m CeTiOx shows an excellent catalytic activity, with more than 90% NO conversion in the range of 250–400 ℃ at a GHSV of 60000 h−1 . The characterization of catalysts by XRD, SEM, BET, NH3-TPD and in-situ DRIFTS indicates that the surface area is not the dominant factor determining the catalytic activity of CeTiOx. 3DOM-m CeTiOx has a highly ordered macroporous-mesoporous structure and abundant Bronsted acidic sites, thereby improving the denitrification activity. The NH3-SCR reaction over the 3DOM-m CeTiOx mainly follows the L-H and E-R mechanisms.
  • loading
  • [1]
    YAN L J, LIU Y Y, LIU Y Y, et al. Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from prussian blue analogues for low-temperature NO reduction: Experimental and DFT studies[J]. ACS Appl Mater Inter,2017,9(3):2581−2593. doi: 10.1021/acsami.6b15527
    [2]
    LIU Z, SUN G X, CHEN C, et al. Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct-O-Mntet sites for efficient selective catalytic reduction(SCR) of NO with ammonia at low temperatures[J]. ACS Catal,2020,10(12):6803−6809. doi: 10.1021/acscatal.0c01284
    [3]
    FANG X, LIU Y J, CHENG Y, et al. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR[J]. ACS Catal,2021,11(7):4125−4135. doi: 10.1021/acscatal.0c05697
    [4]
    CHEN Z C, REN S, WANG M M, et al. Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeO catalyst for low-temperature NH3-SCR reaction[J]. Fuel,2022,321:124113−1124113. doi: 10.1016/j.fuel.2022.124113
    [5]
    PAN Y J, SHEN B X, LIU L J, et al. Develop high efficient of NH3-SCR catalysts with wide temperature range by ball-milled method[J]. Fuel,2020,282:118834. doi: 10.1016/j.fuel.2020.118834
    [6]
    YI X F, WANG J X, LIU Y Q, et al. Promotional effect of Fe and Ce co-doping on a V2O5-WO3/TiO2 catalyst for SCR of NOx with high K and Pb resistance[J]. Catal Sci Technol,2022,12(13):4169−4180. doi: 10.1039/D2CY00818A
    [7]
    梁彦正, 王学涛, 张乾蔚, 等. 双金属Ce-Mn/ZSM-5催化剂的制备及NH3-SCR脱硝性能研究[J]. 燃料化学学报,2020,48(2):205−212.

    LIANG Yanzheng, WANG Xuetao, ZHANG Qianwei, et al. Performance of the modified Cu-Mn/SAPO-34 catalysts in selective catalytic reduction of NOx by NH3[J]. J Fuel Chem Technol,2020,48(2):205−212.
    [8]
    杨洋, 胡准, 米容立, 等. Mn负载量对nMnOx/TiO2催化剂NH3-SCR催化性能的影响[J]. 分子催化,2020,34(4):313−325.

    YANG Yang, HU Zhun, MI Rongli, et al. Effect of Mn loading on catalytic performance of nMnOx/TiO2 in NH3-SCR reaction[J]. J Mol Catal,2020,34(4):313−325.
    [9]
    纪生晓, 张玮坚, 郑玉婴, 等. 低温燃烧法制备Mn-CeOx催化剂及其NH3-SCR脱硝性能[J]. 燃料化学学报,2019,47(2):224−232.

    JI Shengxiao, ZHANG Yijian, ZHENG Yuying, et al. Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3[J]. J Fuel Chem Technol,2019,47(2):224−232.
    [10]
    于飞, 马江丽, 任德志, 等. 铁基分子筛活性位点的制备控制及对NH3-SCR活性的影响[J]. 分子催化,2022,36(4):321−329.

    YU Fei, MA Jiangli, REN Dezhi, et al. Effect of Iron sites and synthesis procedure of Fe-beta catalysts on NH3-SCR performance[J]. J Mol Catal,2022,36(4):321−329.
    [11]
    CHEN W, YANG S, LIU H, et al. Single-atom Ce-modified alpha-Fe2O3 for selective catalytic reduction of NO with NH3[J]. Environ Sci Technol,2022,56:10442−10453. doi: 10.1021/acs.est.2c02916
    [12]
    刘崇飞, 王学涛, 邢利益, 等. 双金属Cu-Ce/SAPO-34催化剂的制备及其NH3-SCR脱硝性能研究[J]. 燃料化学学报,2022,50(10):1316−1323.

    LIU Chongfei, WANG Xuetao, XING Liyi, et al. Study on preparation and denitrification performance of NH3-SCR of bimetallic Cu-Ce/SAPO-34 catalyst[J]. J Fuel Chem Technol,2022,50(10):1316−1323.
    [13]
    WANG J, FAN D Q, YU T, et al. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. J Catal,2015,322:84−90. doi: 10.1016/j.jcat.2014.11.010
    [14]
    LIU C X, CHEN L, LI J H, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol,2012,46(11):6182−6189. doi: 10.1021/es3001773
    [15]
    周国民, 李明圆, 付在国, 等. 碱金属对NH3-SCR脱硝催化剂Ce/TiO2的毒化研究[J]. 应用化工,2018,47(12):2616−2619.

    ZHOU Guomin, LI Mingyuan, FU Zaiguo, et al. Influence of alkali metals on Ce/TiO2 catalyst for selective catalytic reduction of no with NH3[J]. Appl Chem Ind,2018,47(12):2616−2619.
    [16]
    耿新泽, 段钰锋, 胡鹏, 等. SCR气氛下Ce-W/TiO2催化剂的脱硝协同脱汞特性[J]. 中国环境科学,2019,39(4):1419−1426.

    GENG Xinze, DUAN Yufeng, HU Peng, et al. Characteristics of denitrification and mercury removal of Ce-W/TiO2 catalysts in SCR atmosphere[J]. China Environ Sci,2019,39(4):1419−1426.
    [17]
    康海彦, 莫杜娟, 张学军, 等. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J/OL]. 燃料化学学报 (中英文), 2023, 51(6): 814–824.

    KANG Haiyan, MO Dujuan, ZHANG Xuejun, et al. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for selective catalytic reduction with NH3[J/OL]. J Fuel Chem Technol, 2023, 51(6): 814–824.
    [18]
    LI Q, LI X, LI W, et al. Effect of preferential exposure of anatase TiO2 {0 0 1} facets on the performance of Mn-Ce/TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Chem Eng J,2019,369:26−34. doi: 10.1016/j.cej.2019.03.054
    [19]
    赵海, 张德祥, 高晋生. 稀土掺杂铁锰脱硝催化剂的制备及其性能研究[J]. 煤炭转化,2011,34(4):72−74 + 78.

    ZHAO Hai, ZHANG Dexiang, GAO Jinsheng. Selective catalytic reduction of NOx with NH3 over Fe-Mn-O catalyst promoted by CeO2[J]. Coal Conversion,2011,34(4):72−74 + 78.
    [20]
    周超, 赵阳, 徐佳, 等. pH值对浸渍法制备的铈钨钛脱硝催化剂的影响[J]. 稀土,2020,41(5):59−69.

    ZHOU Chao, ZHAO Yang, XU Jia, et al. Effect of pH on denitration performance of CeWTi catalyst[J]. Chin Rare Earths,2020,41(5):59−69.
    [21]
    安志强. 二氧化钛载体制备及性能研究[D]. 南京: 南京工业大学, 2005.

    AN Zhiqiang. Studies on the preparation and performance of TiO2 supports[D]. Nanjing: Nanjing University of Technology, 2005.
    [22]
    ZHANG Z P, LI R M, WANG M J, et al. Two steps synthesis of CeTiOx oxides nanotube catalyst: Enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx[J]. Appl Catal B: Environ,2021,282:119542. doi: 10.1016/j.apcatb.2020.119542
    [23]
    ZHANG Z P, CHEN L Q, LI Z B, et al. Activity and SO2 resistance of amorphous CeaTiOx catalysts for the selective catalytic reduction of NO with NH3: in situ DRIFT studies[J]. Catal Sci Technol,2016,6(19):7151−7162. doi: 10.1039/C6CY00475J
    [24]
    FEI Z Y, YANG Y R, WANG M H, et al. Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3[J]. Chem Eng J,2018,353:930−939. doi: 10.1016/j.cej.2018.07.198
    [25]
    HUANG B J, YU D Q, SHENG Z Y, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. J Environ Sci,2017,55(5):129−136.
    [26]
    MA K L, GUO K, LI L L, et al. Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts[J]. Catal Commun,2019,128:105719. doi: 10.1016/j.catcom.2019.105719
    [27]
    李丹, 王慧, 陈留平, 等. 一种无定形有序的Ce-Ti催化膜用于同时去除粉尘和氮氧化物(英文)[J]. 无机化学学报,2020,36(11):2189−2196.

    LI Dan, WANG Hui, CHEN Liuping, et al. Ordered mesoporous and complete amorphous Ce-Ti catalytic filter for particle separation and NOx removal[J]. Chin J Inorg Chem,2020,36(11):2189−2196.
    [28]
    HONG H, LIU J L, HUANG H W, et al. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries[J]. J Am Chem Soc,2019,141:14764−14771. doi: 10.1021/jacs.9b06957
    [29]
    YANG G C, PAN Q Y, YANG P, et al. Heteropolyacids supported on hierarchically macro/mesoporous TiO2: Efficient catalyst for deep oxidative desulfurization of fuel[J]. Tungsten,2022,4(1):28−37. doi: 10.1007/s42864-021-00125-2
    [30]
    ZHOU Z M, ZENG T Y, CHENG Z M, et al. Preparation and characterization of titania-alumina mixed oxides with hierarchically macro-mesoporous structures[J]. Ind Eng Chem Res,2011,50(2):883−890. doi: 10.1021/ie101697t
    [31]
    ZHOU Z M, ZENG T Y, CHENG Z M, et al. Preparation of a catalyst for selective hydrogenation of pyrolysis gasoline[J]. Ind Eng Chem Res,2010,49:11112−11118. doi: 10.1021/ie1003043
    [32]
    ZHOU Z M, ZENG T Y, CHENG Z M, et al. Diffusion-enhanced hierarchically macro-mesoporous catalyst for selective hydrogenation of pyrolysis gasoline[J]. AICHE J,2011,57(8):2198−2206. doi: 10.1002/aic.12421
    [33]
    邓权政, 毛文婷, 韩璐. 介观尺度多孔材料的电子显微学结构解析[J]. 化学学报,2022,80(8):1203−1216. doi: 10.6023/A22030136

    DENG Quanzheng, MAO Wenting, HAN Lu. Structural solution of porous materials on the mesostructural scale by electron microscopy[J]. Acta Chim Sin,2022,80(8):1203−1216. doi: 10.6023/A22030136
    [34]
    WANG L Y, REN Y, YU X H, et al. Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1-xOd/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NOx[J]. J Catal,2023,417:226−247. doi: 10.1016/j.jcat.2022.12.004
    [35]
    LI Y L, LI W M, YAN R, et al. Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust[J]. Appl Catal B: Environ,2020,268:118455. doi: 10.1016/j.apcatb.2019.118455
    [36]
    宋丽云, 邓世林, 周宜芸, 等. V2O5-MoO3/TiO2催化剂的NH3-SCR性能: 载体的影响[J]. 材料导报,2023,37(6):71−76.

    SONG Liyun, DENG Shilin, ZHOU Yiyun, et al. NH3-SCR performance of V2O5-MoO3/TiO2 catalyst: Effect of support[J]. Mater Rep,2023,37(6):71−76.
    [37]
    ZHANG X L, HU X R, LIU S W, et al. MnOx-pillared rectorite prepared by in-situ deposition as efficient catalysts for low-temperature NH3-SCR: The influences of manganese (II) precursors[J]. J Environ Chem Eng,2022,10(2):105719.
    [38]
    PAN J H, ZHAO X S, LEE W I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications[J]. Chem Eng J,2011,170(2-3):363−380. doi: 10.1016/j.cej.2010.11.040
    [39]
    MU Y B, HUANG X S, TANG Z C, et al. Ordered mesoporous TiO2 framework confined CeSn catalyst exhibiting excellent high activity for selective catalytic reduction of NO with NH3 at low temperature[J]. Chem Eng J,2023,454:140−181.
    [40]
    梅雪垒, 熊靖, 韦岳长, 等. 三维有序大孔钙钛矿型La1−xKxNiO3催化剂提高炭烟催化燃烧活性: K取代的作用(英文)[J]. 催化学报,2019,40(5):722−732. doi: 10.1016/S1872-2067(18)63269-9

    MEI Xuelei, XIONG Jing, WEI Yuechang, et al. Three-dimensional ordered macroporous perovskite-type La1−xKxNiO3 catalysts with enhanced catalytic activity for soot combustion: the Effect of K-substitution[J]. Chin J Catal,2019,40(5):722−732. doi: 10.1016/S1872-2067(18)63269-9
    [41]
    王艳, 李兆强, 赵文怡, 等. 有序介孔CeO2基催化剂用于富H2中CO优先氧化的研究[J]. 稀土,2018,39(1):1−10.

    WANG Yan, LI Zhaoqiang, ZHAO Wenyi, et al. Modified highly ordered mesoporous ceria-based catalysts employed for CO preferential oxidation in H2-rich stream[J]. Chin Rare Earth,2018,39(1):1−10.
    [42]
    ZHONG Y K, CHANG S, DONG G J. Preparation and characterization of a novel double-walled Na2(TiO)SiO4 nanotube by hydrothermal process with CTAB as an assistant[J]. Microporous Mesoporous Mater,2017,239:70−77.
    [43]
    XU Y, ZHOU M L, CHEN M T, et al. Simultaneous removal of NO and elemental mercury from coal-fired flue gas using natural ferruginous manganese ore at low temperature[J]. Fuel,2022,326:125118.
    [44]
    WANTANABE S G, MA X L, SONG C S. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD[J]. J Phys Chem C,2009,113(32):14249−21425. doi: 10.1021/jp8110309
    [45]
    LIU B, LIU J, MA S C, et al. Mechanistic study of selective catalytic reduction of NO with NH3 on W-Doped CeO2 catalysts: Unraveling the catalytic cycle the role of oxygen vacancy[J]. J Phys Chem C,2016,120(4):2271−2283. doi: 10.1021/acs.jpcc.5b11355
    [46]
    WU Z B, JIANG B Q, LIU Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol,2007,41(16):5812−5817. doi: 10.1021/es0700350
    [47]
    LIU F D, ASAKURA K, HE H, et al. Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Today,2011,164(1):520−527. doi: 10.1016/j.cattod.2010.10.008
    [48]
    陈宜华, 王攀, 孟凡禹, 等. VPO/TiO2催化剂表面酸性位调控及低温NH3-SCR脱硝性能研究[J]. 中国环境科学,2023,43(4):1558−1566.

    CHEN Yihua, WANG Pan, MENG Fanyu, et al. The optimization of surface acidity VPO/TiO, catalyst and its low-temperature NH3-SCR denitration performance[J]. China Environ Sci,2023,43(4):1558−1566.
    [49]
    SHAN W, LIU F, HONG H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2012,115−116:100−106. doi: 10.1016/j.apcatb.2011.12.019
    [50]
    CHEN L, LI J, GE M F. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol,2010,44:9590−9596. doi: 10.1021/es102692b
    [51]
    LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Appl Catal B: Environ,2014,144:90−95. doi: 10.1016/j.apcatb.2013.06.036
    [52]
    SHU Y, SUN H, QUAN X, et al. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia[J]. J Phys Chem C,2012,116(48):25319−25327. doi: 10.1021/jp307038q
    [53]
    LIU Z, LIU Y, CHEN B, et al. Novel Fe-Ce-Ti catalyst with remarkable performance for the selective catalytic reduction of NOx by NH3[J]. Catal Sci Technol,2016,6:6688−6696. doi: 10.1039/C5CY02278A
    [54]
    CHEN W M, MA Y P, QU Z, et al. Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared fourier transform spectroscopy[J]. Environ Sci Technol,2014,48(20):12199−12205. doi: 10.1021/es502369f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return