Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WANG Jia, GAO Xiujuan, SONG Faen, ZHANG Junfeng, WANG Xiaoxing, ZHANG Tao, TAN Yisheng, HAN Yizhuo, ZHANG Qingde. Effect of molybdenum valence in low Mo/Sn ratio catalysts for the oxidation of methanol to dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 38-46. doi: 10.1016/S1872-5813(23)60370-6
Citation: WANG Jia, GAO Xiujuan, SONG Faen, ZHANG Junfeng, WANG Xiaoxing, ZHANG Tao, TAN Yisheng, HAN Yizhuo, ZHANG Qingde. Effect of molybdenum valence in low Mo/Sn ratio catalysts for the oxidation of methanol to dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 38-46. doi: 10.1016/S1872-5813(23)60370-6

Effect of molybdenum valence in low Mo/Sn ratio catalysts for the oxidation of methanol to dimethoxymethane

doi: 10.1016/S1872-5813(23)60370-6
Funds:  The project was supported by the National Natural Science Foundation of China (22172187),the Central Guidance on Local Science and Technology Development Fund of Shanxi Province (YDZJSX2022A072),the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund,CAS (DNL 201903),and the Youth Innovation Promotion Association CAS (2014155)
  • Received Date: 2023-04-04
  • Accepted Date: 2023-04-27
  • Rev Recd Date: 2023-04-26
  • Available Online: 2023-05-24
  • Publish Date: 2024-01-09
  • A series of Mo/Sn (1:20, molar ratio) catalysts were prepared by two-step hydrothermal synthesis method, and the effect of calcination temperature of tin precursors on the reaction performance of methanol oxidation to dimethoxymethane (DMM) was investigated. The crystal structure, surface properties, redox property and valence change of molybdenum species of the catalyst were characterized by XRD, Raman, FT-IR, XPS, NH3-TPD and H2-TPR. The results showed that Mo1Sn20-600℃Sn catalyst exhibited better performance than other catalysts, achieving DMM selectivity of 90% with methanol conversion of 30% at 140 ℃. From the characterization results, the surface properties of the tin precursors affected the structure of catalyst, the degree of molybdenum oxide dispersion and valence of molybdenum species, and further influenced the performance of the catalysts. The high temperature calcination of tin precursors is more favorable for the generation of Mo6+ in the Mo1Sn20 catalyst.
  • loading
  • [1]
    WU Q, TU K, ZENG Y, et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. J China Coal Soc,2019,44(6):1625−1636.
    [2]
    XIE H, WU L, ZHENG D. Prediction on the energy consumption and coal demand of China in 2025[J]. J China Coal Soc,2019,44(7):1949−1960.
    [3]
    SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule,2018,2(10):1925−1949. doi: 10.1016/j.joule.2018.08.016
    [4]
    REN J, XIN F, XU Y S. A review on direct synthesis of dimethoxymethane[J]. Chin J Chem Eng,2022,50:43−55. doi: 10.1016/j.cjche.2022.09.008
    [5]
    SCHMITZ N, BURGER J, HASSE H. Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Ind Eng Chem Res,2015,54(50):12553−12560. doi: 10.1021/acs.iecr.5b04046
    [6]
    YUAN M, DONG M R, TIAN Z W, et al. Reaction mechanisms and catalysis in the one-step synthesis of methylal via methanol oxidation[J]. J Energy Inst,2022,103:47−53. doi: 10.1016/j.joei.2022.05.006
    [7]
    GAO X J, ZHANG J F, SONG F E, et al. Selective oxidation conversion of methanol/dimethyl ether[J]. Chem Commun,2022,58(30):4687−4699. doi: 10.1039/D1CC07276E
    [8]
    AHMAD W, CHAN F L, SHROTRI A, et al. Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA[J]. J Energy Chem,2022,66:181−189. doi: 10.1016/j.jechem.2021.07.026
    [9]
    YUAN Y Z, LIU H C, IMOTO H, et al. Performance and characterization of a new crystalline SbRe2O6 catalyst for selective oxidation of methanol to methylal[J]. J Catal,2000,195(1):51−61. doi: 10.1006/jcat.2000.2990
    [10]
    LIU H C, IGLESIA E. Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters[J]. J Catal,2004,223(1):161−169. doi: 10.1016/j.jcat.2004.01.012
    [11]
    ZHAO H Y, BENNICI S, SHEN J Y, et al. Nature of surface sites of V2O5-TiO2/ $ {\rm{SO}}_4^{2-} $ catalysts and reactivity in selective oxidation of methanol to dimethoxymethane[J]. J Catal,2010,272(1):176−189. doi: 10.1016/j.jcat.2010.02.028
    [12]
    GORNAY J, SECORDEL X, TESQUET G, et al. Direct conversion of methanol into 1, 1-dimethoxymethane: remarkably high productivity over an FeMo catalyst placed under unusual conditions[J]. Green Chem,2010,12(10):1722−1725. doi: 10.1039/c0gc00194e
    [13]
    MENG Y L, WAG T, CHEN S, et al. Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/gamma-Al2O3 catalysts[J]. Appl Catal B: Environ,2014,160:161−172.
    [14]
    YUAN Y Z, SHIDO T, IWASAWA Y. The new catalytic property of supported rhenium oxides for selective oxidation of methanol to methylal[J]. Chem Commun,2000,(15):1421−1422. doi: 10.1039/b003870i
    [15]
    GUO H Q, LI D B, CHEN C B, et al. The one-step oxidation of methanol to dimethoxymethane over sulfated vanadia-titania catalysts: influence of calcination temperature[J]. RSC Adv,2015,5(79):64202−64207. doi: 10.1039/C5RA09072E
    [16]
    THAVORNPRASERT K A, CAPRON M, JALOWIECKI-DUHAMEL L, et al. Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1, 1-dimethoxymethane from methanol[J]. Appl Catal B: Environ,2014,145:126−135. doi: 10.1016/j.apcatb.2013.01.043
    [17]
    ZHANG Z Z, ZHANG Q D, JIA L Y, et al. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol,2016,6(15):6109−6117. doi: 10.1039/C6CY00460A
    [18]
    VALENTE N G, ARRUA L A, CADUS L E. Structure and activity of Sn-Mo-O catalysts: partial oxidation of methanol[J]. Appl Catal A: Gen,2001,205(1-2):201−214. doi: 10.1016/S0926-860X(00)00565-2
    [19]
    LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal,2003,217(1):222−232.
    [20]
    GONCALVES F, MEDEIROS P R S, EON J G, et al. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A: Gen,2000,193(1/2):195−202. doi: 10.1016/S0926-860X(99)00430-5
    [21]
    熊盼, 高秀娟, 王文秀, 等. 焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响[J]. 燃料化学学报,2022,50(1):63−71.

    XIONG Pan, GAO Xiu-juan, WANG Wen-xiu, et al. Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation[J]. J Fuel Chem Technol,2022,50(1):63−71.
    [22]
    王文秀. 钼基催化剂上甲醇低温氧化研究[D]. 北京: 中国科学院大学, 2021.

    WANG Wen-xiu. Study on low temperature oxidation of methanol over molybdenum-based catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2021.
    [23]
    YAN L N, ZHANG J F, GAO X J, et al. Oxidative coupling of methane over Mo-Sn catalysts[J]. Chem Commun,2021,57(98):13297−13300. doi: 10.1039/D1CC04821J
    [24]
    CHIORINO A, GHIOTTI G, PRINETTO F, et al. Preparation and characterization of SnO2 and MoOx-SnO2 nanosized powders for thick film gas sensors[J]. Sens Actuators B: Chem,1999,58(1/3):338−349. doi: 10.1016/S0925-4005(99)00094-5
    [25]
    MAKEEVA E A, RUMYANTSEVA M N, GAS'KOV A M. Synthesis, microstructure, and gas-sensing properties of SnO2/MoO3 nanocomposites[J]. Inorg Mater,2005,41(4):370−377. doi: 10.1007/s10789-005-0139-4
    [26]
    SHAKIR I, SHAHID M, CHEREVKO S, et al. Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3-MWCNT nanocomposites[J]. Electrochim Acta,2011,58:76−80. doi: 10.1016/j.electacta.2011.08.076
    [27]
    ZHANG Z Z, ZHANG Q D, JIA L Y, et al. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol,2016,6(9):2975−2983. doi: 10.1039/C5CY01569C
    [28]
    杨奇, 高秀娟, 冯茹, 等. 水热合成的MoO3-SnO2催化剂催化氧化二甲醚的性能研究[J]. 燃料化学学报,2019,47(8):934−941. doi: 10.1016/S1872-5813(19)30038-6

    YANG Qi, GAO Xiu-juan, FENG Ru, et al. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941. doi: 10.1016/S1872-5813(19)30038-6
    [29]
    王文秀, 高秀娟, 熊盼, 等. Mo-Sn催化剂上甲醇低温氧化制甲缩醛[J]. 燃料化学学报,2021,49(10):1487−1494. doi: 10.1016/S1872-5813(21)60094-4

    WANG Wen-xiu, GAO Xiu-juan, XIONG Pan, et al. Low-temperature oxidation of methanol over Mo-Sn catalyst[J]. J Fuel Chem Technol,2021,49(10):1487−1494. doi: 10.1016/S1872-5813(21)60094-4
    [30]
    GU Y Y, ZHANG Z Z, WANG W F, et al. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for theoxidation of dimethyl ether at low temperature[J]. J Fuel Chem Technol,2017,45(5):572−580.
    [31]
    YUAN M, TANG R Y, SUN X Y, et al. Effects of the support on bifunctional one-step synthesis of methylal via methanol oxidation catalysed by Fe-Mo-based bifunctional catalysts[J]. Sustainable Energy Fuels,2021,5(1):246−260. doi: 10.1039/D0SE01194K
    [32]
    ROJAS F, KORNHAUSER I, FELIPE C, et al. Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation[J]. Phys Chem Chem Phys,2002,4(11):2346−2355. doi: 10.1039/b108785a
    [33]
    熊盼. 二甲醚低温氧化钼基催化剂活性位结构与性能的研究[D]. 北京: 中国科学院大学, 2021.

    XIONG Pan. Study on the structure and properties of active site of low temperature oxidation of dimethyl ether over molybdenum based catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2021.
    [34]
    MESTL G, SRINIVASAN T K K. Raman spectroscopy of monolayer-type catalysts: Supported molybdenum oxides[J]. Catal Rev,1998,40(4):451−570. doi: 10.1080/01614949808007114
    [35]
    YANG J K, ZHAO H L, ZHANG F C. Effects of heat treatment on the chemical states of O 1s and Sn 3d at the surface of SnOx: F films by APCVD[J]. Mater Lett,2013,90:37−40. doi: 10.1016/j.matlet.2012.07.055
    [36]
    TAN X J, WANG L Z, CHENG C, et al. Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement[J]. Chem Commun,2016,52(14):2893−2896. doi: 10.1039/C5CC10020H
    [37]
    YANG J, XIAO X, CHEN P, et al. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan[J]. Nano Energy,2019,58(1):455−465.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (278) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return