Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
SUN Yu, GAO Xinhua, MA Qingxiang, FAN Subing, ZHAO Tiansheng, ZHANG Jianli. Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0
Citation: SUN Yu, GAO Xinhua, MA Qingxiang, FAN Subing, ZHAO Tiansheng, ZHANG Jianli. Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0

Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation

doi: 10.1016/S1872-5813(23)60378-0
Funds:  The project was supported by the National Natural Science Foundation of China (21968025) and the Key Project of Ningxia Natural Science Foundation (2022AAC02002).
  • Received Date: 2023-04-23
  • Accepted Date: 2023-06-04
  • Rev Recd Date: 2023-06-03
  • Available Online: 2023-06-27
  • Publish Date: 2024-01-09
  • Carbon nitride (g-C3N4) prepared using thermal condensation of urea was pretreated by H2O2/NH3·H2O and used as support to obtain Fe/g-C3N4 catalyst via impregnation method. The catalytic performance of the catalysts both before and after modification was investigated in CO hydrogenation. Combining detailed characterizations, such as XRD, SEM, TEM, FT-IR, TG, CO2-TPD, CO-TPD, H2-TPR, contact angle measurement, and N2 physical adsorption and desorption, we investigated the effects of surface pretreatment on the texture properties of Fe/g-C3N4 catalysts and the product distribution of CO hydrogenation. The results demonstrate that various pretreatment techniques have significant influences on the textural properties and catalytic performance of the catalysts. The prepared g-C3N4 with a typical honeycomb structure has strong interaction with highly dispersed Fe. Both before and after modification, the materials are hydrophilic, and the hydrophilicity is increased after treatment with H2O2 and NH3·H2O. Treatment with H2O2 enhances surface hydroxyl groups. NH3·H2O treatment improves surface amino groups, promotes CO adsorption, and facilitates the formation of Fe(NCN) phase. The surface basicity of all pretreated catalysts is enhanced. The water gas shift (WGS) reaction activity of the two-step modified catalyst Fe/AM-g-C3N4 was lower, and the CO2 selectivity in CO hydrogenation was reduced to 11.61%. Due to the enhanced basicity of Fe/AM-g-C3N4, the secondary hydrogenation ability of olefins was inhibited to obtain higher olefin selectivity with ${\rm{C}}_2^=-{\rm{C}}_4^=\;s \;{\rm{of}}$ 32.37% and an O/P value of 3.23.
  • loading
  • [1]
    FUJIMORI S, INOUE S, Carbon monoxide in main-group chemistry[J]. J Am Chem Soc, 2022, 5(144): 2034–2050.
    [2]
    刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报 (中英文),2023,51(1):34−51.

    LIU Sai-sai, YAO Jin-gang, CHEN Guan-yi, et al. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. J Fuel Chem Technol,2023,51(1):34−51.
    [3]
    CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4278. doi: 10.1002/anie.201601208
    [4]
    JIAO F, LI J J, PAN X L, et al, Selective conversion of syngas to light olefins[J]. Science, 2016, 6277(351): 1065–1068.
    [5]
    JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angew Chem Int Ed,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [6]
    ZHANG P P, TAN L, YANG G H, et al. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci,2017,8(12):7941−7946. doi: 10.1039/C7SC03427J
    [7]
    ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [8]
    YU X F, ZHANG J L, WANG X, et al. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B: Environ,2018,232:420−428. doi: 10.1016/j.apcatb.2018.03.048
    [9]
    XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [10]
    马龙, 张玉玺, 高新华, 等. Fe3O4@PI催化剂的制备及其费托合成性能[J]. 燃料化学学报,2020,48(7):813−820. doi: 10.1016/S1872-5813(20)30057-8

    MA Long, ZHANG Yu-xi, GAO Xin-hua, et al. Preparation of Fe3O4@PI and its catalytic performance in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2020,48(7):813−820. doi: 10.1016/S1872-5813(20)30057-8
    [11]
    FANG W, WANG C T, LIU Z Q, et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration[J]. Science,2022,377(6604):406−410. doi: 10.1126/science.abo0356
    [12]
    OKOYE-CHINE C G, MOYO M, HILDEBRANDT D. The influence of hydrophobicity on Fischer-Tropsch synthesis catalysts[J]. Rev Chem Eng,2022,38(5):477−502. doi: 10.1515/revce-2020-0037
    [13]
    CHEN Z, ZHANG J, ZHENG S K, et al. The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis[J]. Mol Catal,2018,444:90−99. doi: 10.1016/j.molcata.2016.12.011
    [14]
    PARK H, YOUN D H, KIM J Y, et al. Selective formation of hägg iron carbide with g-C3N4 as a sacrificial support for highly active Fischer-Tropsch synthesis[J]. ChemCatChem,2015,7(21):3488−3494. doi: 10.1002/cctc.201500794
    [15]
    KOO H M, WANG X, KIM A R, et al. Effects of self-reduction of Co nanoparticles on mesoporous graphitic carbon-nitride to CO hydrogenation activity to hydrocarbons[J]. Fuel,2021,287:119437.
    [16]
    ZHANG Y X, GUO X Y, LIU B, et al. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution[J]. Fuel,2021,305:121473. doi: 10.1016/j.fuel.2021.121473
    [17]
    WANG Z Y, GUAN W, SUN Y J, et al. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity[J]. Nanoscale,2015,7(6):2471−2479. doi: 10.1039/C4NR05732E
    [18]
    JÜRGENS B, IRRAN E, SENKER J, et al. Melem (2, 5, 8-Triamino-tri-striazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, Solid-State NMR, and theoretical studies[J]. J Am Chem Soc,2003,125(34):10288−10300. doi: 10.1021/ja0357689
    [19]
    GUO F, WANG L J, SUN H R, et al. A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen[J]. Int J Hydrogen Energ,2020,45(55):30521−30532. doi: 10.1016/j.ijhydene.2020.08.080
    [20]
    KANG S F, HE M F, CHEN M Y, et al. Surface amino group regulation and structural engineering of graphitic carbon nitride with enhanced photocatalytic activity by ultrafast ammonia plasma immersion modification[J]. ACS Appl Mater Interfaces,2019,11(16):14952−14959. doi: 10.1021/acsami.9b01068
    [21]
    WANG X H, NAN Z D. Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism[J]. Sep Purif Technol, 2020, 233: 116023–116032
    [22]
    AN S F, ZHANG G H, WANG T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano,2018,12(9):9441−9450. doi: 10.1021/acsnano.8b04693
    [23]
    DING Z X, CHEN X F, ANTONIETTI M, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem,2010,4(2):274−281.
    [24]
    ZHANG Y X, GUOX Y, LIU B, et al. Cellulose modified iron catalysts for enhanced light olefins and linear $ {\rm{C}}_5^+ $ α-olefins from CO hydrogenation[J]. Fuel,2021,294(9):120504.
    [25]
    MA J, SUN N, WANG C, et al. Facile synthesis of novel Fe3O4@SiO2@mSiO2@TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance[J]. J Alloy Compd,2018,743:456−463. doi: 10.1016/j.jallcom.2018.02.005
    [26]
    TORSHIZI H O, POUR A N, MOHAMMADI A, et al. Fischer-Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride[J]. New J Chem,2020,44(15):6053−6062. doi: 10.1039/D0NJ01041C
    [27]
    XU H, YAN J, XU Y G, et al. Novel visible-light-driven AgX/graphite-like g-C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity[J]. Appl Catal B: Environ,2013,129:182−193. doi: 10.1016/j.apcatb.2012.08.015
    [28]
    XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J Phys Chem C,2011,115(15):7355−7363. doi: 10.1021/jp200953k
    [29]
    LI Y P, ZHAN J, HUANG L Y, et al. Synthesis and photocatalytic activity of a bentonite/g-C3N4 composite[J]. RSC Adv,2014,4(23):11831−11839. doi: 10.1039/c3ra46818f
    [30]
    ZHANG S, GUO H Y, HOU W L, et al. Synthesis, structure and photocatalytic properties of benzo[ghi] perylenetriimide/graphitic carbon nitride composite[J]. Mater Lett,2018,221:38−41. doi: 10.1016/j.matlet.2018.03.045
    [31]
    HUANG L Y, LI Y P, XU H, et al. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity[J]. RSC Adv,2013,3(44):22269−22279. doi: 10.1039/c3ra42712a
    [32]
    NIE C, ZHANG H T, MA H F, et al. Effects of Ce addition on Fe-Cu catalyst for Fischer-Tropsch synthesis[J]. Catal Lett,2019,149(5):1375−1382. doi: 10.1007/s10562-019-02700-2
    [33]
    DING M Y, YANG Y, WU B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy,2015,160:982−989. doi: 10.1016/j.apenergy.2014.12.042
    [34]
    LU J Z, YANG L J, XU B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal,2014,4(2):613−621. doi: 10.1021/cs400931z
    [35]
    YANG Q, WANG W Y, ZHAO Y X, et al. Metal-free mesoporous carbon nitride catalyze the Friedel-Crafts reaction by activation of benzene[J]. RSC Adv,2015,5(68):54978−54984. doi: 10.1039/C5RA08871B
    [36]
    CVIJOVIC L, KOTA K. Creating highly wettable paper towel-like aluminum surfaces through tuned bulk micro-manufacturing[J]. Int J Adv Manuf Technol,2018,98:2601−2609. doi: 10.1007/s00170-018-2290-5
    [37]
    LI Z Z, MENG X C, ZHANG Z S. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity[J]. Catal Sci Technol,2019,9(15):3979−3993. doi: 10.1039/C9CY00550A
    [38]
    ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catal Sci Technol,2015,5(3):1433−1437. doi: 10.1039/C4CY01631A
    [39]
    GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, et al. Key role of surface hydroxyl groups in C-O activation during Fischer-Tropsch synthesis[J]. ACS Catal,2016,6(6):3660−3664. doi: 10.1021/acscatal.6b00634
    [40]
    GU B, HE S, ZHOU W, et al. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas[J]. J Energy Chem,2017,26(4):608−615. doi: 10.1016/j.jechem.2017.04.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (387) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return