Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
DAI Yuhang, LI Kaige, ZHAO Jinxian, REN Jun, QUAN Yanhong. Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0
Citation: DAI Yuhang, LI Kaige, ZHAO Jinxian, REN Jun, QUAN Yanhong. Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0

Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst

doi: 10.1016/S1872-5813(23)60381-0
More Information
  • Corresponding author: E-mail: renjun@tyut.edu.cn
  • Received Date: 2023-05-04
  • Accepted Date: 2023-06-16
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-09-18
  • Publish Date: 2024-01-09
  • Catalytic combustion is an effective approach to remove volatile organic compounds, in which the development of highly active and durable catalyst is extremely crucial. Herein, a series of CuMnCex/Al2O3/cordierite monolithic catalysts were synthesized by using the ultrasonic-assisted impregnation method. The physicochemical properties were comprehensively characterized via the BET, XRD, SEM, EDX, H2-TPR, O2-TPD, XPS and EPR techniques. The results showed that the catalytic activity of CuMnCex/Al2O3/Cor for toluene combustion was strongly affected by the Ce content. The CuMnCe2/Al2O3/Cor monolithic catalyst showed the best catalytic activity with toluene conversion of 90% at 263 °C under toluene concentration of 1 g/L and space velocity of 78000 mL/(g·h). Meanwhile, the well-dispersed CeO2 in the CuMn matrix not only improved the content of oxygen vacancies and the mobility of oxygen species, but also enhanced the low-temperature reducibility of the catalyst. Moreover, the CuMnCe2/Al2O3/Cor monolithic catalyst exhibited an excellent stability in the long-term test and cycle ability test.
  • loading
  • [1]
    MCDONALD B C, DE GOUW J A, GILMAN J B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions[J]. Science,2018,359:760−764. doi: 10.1126/science.aaq0524
    [2]
    PENG Y, YANG Q, WANG L, et al. VOC emissions of coal-fired power plants in China based on life cycle assessment method[J]. Fuel,2021,292:120325. doi: 10.1016/j.fuel.2021.120325
    [3]
    SEKIGUCHI K, YASUI F, FUJII E. Capturing of gaseous and particulate pollutants into liquid phase by a water/oil column using microbubbles[J]. Chemosphere,2020,256:126996. doi: 10.1016/j.chemosphere.2020.126996
    [4]
    LI Z, JIN Y, CHEN T, et al. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity[J]. Sep Purif Technol,2021,272:118659. doi: 10.1016/j.seppur.2021.118659
    [5]
    YI S, WAN Y. Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane[J]. Chem Eng J,2017,313:1639−1646. doi: 10.1016/j.cej.2016.11.061
    [6]
    YAO X, ZHANG J, LIANG X, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support[J]. Chemosphere,2018,208:922−930. doi: 10.1016/j.chemosphere.2018.06.064
    [7]
    LI Y, GUO Y, XUE B. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia[J]. Fuel Process Technol,2009,90:652−656. doi: 10.1016/j.fuproc.2008.12.002
    [8]
    HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catal Sci Technol,2015,5:2649−2669. doi: 10.1039/C4CY01733A
    [9]
    KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) – A review[J]. Atmos Environ,2016,140:117−134. doi: 10.1016/j.atmosenv.2016.05.031
    [10]
    WANG Z, YANG H, LIU R, et al. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst[J]. J Hazard Mater,2020,392:122258. doi: 10.1016/j.jhazmat.2020.122258
    [11]
    ZHANG Z, ZHENG J, SHANGGUAN W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catal Today,2016,264:270−278. doi: 10.1016/j.cattod.2015.10.040
    [12]
    KIM H S, KIM H J, KIM J H, et al. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal[J]. Catalysts,2022,12:63. doi: 10.3390/catal12010063
    [13]
    WANG S, GU J, SHAN R, et al. Catalytic toluene steam reforming using Ni supported catalyst from pyrolytic peat[J]. Fuel Process Technol,2021,224:107032. doi: 10.1016/j.fuproc.2021.107032
    [14]
    LI K, LI T, DAI Y, et al. Highly active urchin-like MCo2O4 (M = Co, Cu, Ni or Zn) spinel for toluene catalytic combustion[J]. Fuel,2022,318:123648. doi: 10.1016/j.fuel.2022.123648
    [15]
    GUO Y, WEN M, SONG S, et al. Enhanced catalytic elimination of typical VOCs over ZnCoOx catalyst derived from in situ pyrolysis of ZnCo bimetallic zeolitic imidazolate frameworks[J]. Appl Catal B: Environ,2022,308:121212. doi: 10.1016/j.apcatb.2022.121212
    [16]
    PIUMETTI M, FINO D, RUSSO N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Appl Catal B: Environ,2015,163:277−287. doi: 10.1016/j.apcatb.2014.08.012
    [17]
    ZHOU L, ZHANG B, LI Z, et al. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs[J]. Mol Catal,2020,489:110920. doi: 10.1016/j.mcat.2020.110920
    [18]
    CAI T, LIU Z, YUAN J, et al. The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation[J]. Appl Surf Sci,2021,565:150596. doi: 10.1016/j.apsusc.2021.150596
    [19]
    CHEN G, CAI Y, ZHANG H, et al. Pt and Mo Co-Decorated MnO2 nanorods with superior resistance to H2O, sintering, and HCl for catalytic oxidation of chlorobenzene[J]. Environ Sci Technol,2021,55:14204−14214. doi: 10.1021/acs.est.1c05086
    [20]
    CHEN J, CHEN X, XU W, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J,2017,330:281−293. doi: 10.1016/j.cej.2017.07.147
    [21]
    HU W, HUANG J, XU J, et al. Insights into the superior performance of mesoporous MOFs-derived Cu-Mn oxides for toluene total catalytic oxidation[J]. Fuel Process Technol,2022,236:107424. doi: 10.1016/j.fuproc.2022.107424
    [22]
    AGUILERA D A, PEREZ A, MOLINA R, et al. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Appl Catal B: Environ,2011,104:144−150. doi: 10.1016/j.apcatb.2011.02.019
    [23]
    WANG L, SUN Y, ZHU Y, et al. Revealing the mechanism of high water resistant and excellent active of CuMn oxide catalyst derived from Bimetal-Organic framework for acetone catalytic oxidation[J]. J Colloid Interface Sci,2022,622:577−590. doi: 10.1016/j.jcis.2022.04.155
    [24]
    WANG Y, YANG D, LI S, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chem Eng J,2019,357:258−268. doi: 10.1016/j.cej.2018.09.156
    [25]
    LU J, ASAHINA S, TAKAMI S, et al. Interconnected 3D framework of CeO2 with high oxygen storage capacity: High-Resolution scanning electron microscopic observation[J]. ACS Appl Nano Mater,2020,3:2346−2353. doi: 10.1021/acsanm.9b02446
    [26]
    XIAO Y, LI H, XIE K. Activating lattice oxygen at the twisted surface in a mesoporous CeO2 single crystal for efficient and durable catalytic CO oxidation[J]. Angew Chem Int Ed,2021,60:5240−5244. doi: 10.1002/anie.202013633
    [27]
    WANG C, ZHANG C, HUA W, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem Eng J, 2017, 315: 392-402.
    [28]
    WANG Y, XUE R, ZHAO C, et al. Effects of Ce in the catalytic combustion of toluene on CuxCe1−xFe2O4[J]. Colloid Surface A,2018,540:90−97. doi: 10.1016/j.colsurfa.2017.12.067
    [29]
    MIAO C, LIU J, ZHAO J, et al. Catalytic combustion of toluene over CeO2-CoOx composite aerogels[J]. New J Chem,2020,44:11557−11565. doi: 10.1039/D0NJ00091D
    [30]
    GÓMEZ D M, GATICA J M, HERNÁNDEZ-GARRIDO J C, et al. A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation[J]. Appl Catal B: Environ,2014,144:425−434. doi: 10.1016/j.apcatb.2013.07.045
    [31]
    MA M, YANG R, JIANG Z, et al. Fabricating M/Al2O3/cordierite (M = Cr, Mn, Fe, Co, Ni and Cu) monolithic catalysts for ethyl acetate efficient oxidation: Unveiling the role of water vapor and reaction mechanism[J]. Fuel,2021,303:121244. doi: 10.1016/j.fuel.2021.121244
    [32]
    HEIBEL A K, SORENSEN C M. Monolithic catalysts for the chemical industry[J]. Ind Eng Chem Res,2004,43:4602−4611. doi: 10.1021/ie030730q
    [33]
    ZHAO H, WANG H, QU Z. Synergistic effects in Mn-Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs[J]. J Environ Sci,2022,112:231−243. doi: 10.1016/j.jes.2021.05.003
    [34]
    XIONG J, LUO Z, YANG J, et al. Robust and well-controlled TiO2-Al2O3 binary nanoarray-integrated ceramic honeycomb for efficient propane combustion[J]. CrystEngComm,2019,21:2727−2735. doi: 10.1039/C8CE02012D
    [35]
    ZHOU H, GE M, WU S, et al. Iron based monolithic catalysts supported on Al2O3, SiO2, and TiO2: A comparison for NO reduction with propane[J]. Fuel,2018,220:330−338. doi: 10.1016/j.fuel.2018.01.077
    [36]
    TIAN F, LI K, SU Y. Catalytic performance and characterization of Ce-Modified Fe catalysts supported on Al2O3 for SCR-C3H8[J]. Catal Surv Asia,2020,24:239−249. doi: 10.1007/s10563-020-09306-4
    [37]
    LU H, ZHOU Y, HUANG H, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. J Rare Earth,2011,29(9):855−860. doi: 10.1016/S1002-0721(10)60555-8
    [38]
    BEHAR S, GONZALEZ P, AGULHON P, et al. New synthesis of nanosized Cu-Mn spinels as efficient oxidation catalysts[J]. Catal Today,2012,189:35−41. doi: 10.1016/j.cattod.2012.04.004
    [39]
    LIU P, WEI G, LIANG X, et al. Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance[J]. Appl Clay Sci,2018,161:265−273. doi: 10.1016/j.clay.2018.04.032
    [40]
    XIAO R, QIN R, ZHANG C, et al. Catalytic decomposition of ethyl acetate over La-modified Cu-Mn oxide supported on honeycomb ceramic[J]. J Rare Earth,2021,39:817−825. doi: 10.1016/j.jre.2020.10.015
    [41]
    SUMRUNRONNASAK S, CHANLEK N, PIMPHA N. Improved CeCuOx catalysts for toluene oxidation prepared by aqueous cationic surfactant precipitation method[J]. Mater Chem Phys,2018,216:143−152.
    [42]
    DÍAZ C C, YESTE M P, VIDAL H, et al. In situ generation of Mn1-xCex system on cordierite monolithic supports for combustion of n-hexane. Effects on activity and stability[J]. Fuel,2020,262:116564. doi: 10.1016/j.fuel.2019.116564
    [43]
    FENG J, HOU Z Y, ZHOU X Y, et al. Low-temperature catalytic oxidation of toluene over Mn-Co-O/Ce0.65Zr0.35O2 mixed oxide catalysts[J]. Chem Pap,2018,72:161−173. doi: 10.1007/s11696-017-0267-8
    [44]
    DENG L, HUANG C, KAN J, et al. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion[J]. J Rare Earth,2018,36:265−272. doi: 10.1016/j.jre.2017.07.015
    [45]
    LIU G, YUE R, JIA Y, et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J]. Particuology,2013,11:454−459. doi: 10.1016/j.partic.2012.09.013
    [46]
    LUO Y, ZHENG Y, ZUO J, et al. Insights into the high performance of Mn-Co oxides derived from metalorganic frameworks for total toluene oxidation[J]. J Hazard Mater,2018,349:119−127. doi: 10.1016/j.jhazmat.2018.01.053
    [47]
    WANG T, SUN Y, ZHOU Y, et al. Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2−xO4 oxides for the oxidation reaction[J]. ACS Catal,2018,8:8568−8577. doi: 10.1021/acscatal.8b02376
    [48]
    LI S, MO S, WANG D, et al. Synergistic effect for promoted benzene oxidation over monolithic CoMnAlO catalysts derived from in situ supported LDH film[J]. Catal Today,2019,332:132−138. doi: 10.1016/j.cattod.2018.08.014
    [49]
    CUO Z, WANG D, GONG Y, et al. A novel porous ceramic membrane supported monolithic Cu-doped Mn-Ce catalysts for benzene combustion[J]. Catalysts,2019,9:652. doi: 10.3390/catal9080652
    [50]
    LI W, LIU H, MA X, et al. Fabrication of silica supported Mn-Ce benzene oxidation catalyst by a simple and environment-friendly oxalate approach[J]. J Porous Mater,2018,25:107−117. doi: 10.1007/s10934-017-0424-z
    [51]
    ZUO S, YANG P, WANG X. Efficient and environmentally friendly synthesis of AlFe-PILC-Supported MnCe catalysts for benzene combustion[J]. ACS Omega,2017,2:5179−5186. doi: 10.1021/acsomega.7b00592
    [52]
    CUO Z, DENG Y, LI W, et al. Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene[J]. Appl Surf Sci,2018,456:594−601. doi: 10.1016/j.apsusc.2018.06.207
    [53]
    CHEN J, CHEN X, YAN D, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Appl Catal B: Environ,2019,250:396−407. doi: 10.1016/j.apcatb.2019.03.042
    [54]
    ZANG M, ZHAO C, WANG Y, et al. Ceramic-monolith-supported La0.8Ce0.2MnO3 catalysts for toluene oxidation[J]. Mater Lett,2019,253:196−200. doi: 10.1016/j.matlet.2019.05.135
    [55]
    ZANG M, ZHAO C, WANG Y, et al. Low temperature catalytic combustion of toluene over three-dimensionally ordered La0.8Ce0.2MnO3/cordierite catalysts[J]. Appl Surf Sci,2019,483:355−362. doi: 10.1016/j.apsusc.2019.03.320
    [56]
    WANG S, LI T, CHENG X, et al. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LHD[J]. Water Res,2023,233:119744. doi: 10.1016/j.watres.2023.119744
    [57]
    WANG S, ZHU J, LI T, et al. Oxygen vacancy-mediated CuCoFe/tartrate-LHD catalyst directly activates oxygen to produce superoxide radicals: Transformation of active species and implication for nitrobenzene degradation[J]. Environ Sci Technol,2022,56:7924−47934. doi: 10.1021/acs.est.2c00522
    [58]
    CARRILLO A M, CARRIAZO J G. Cu and Co oxides supported on halloysite for the total oxidation of toluene[J]. Appl Catal B: Environ,2015,164:443−452. doi: 10.1016/j.apcatb.2014.09.027
    [59]
    LI L, JING F, YAN J, et al. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion[J]. Catal Today,2017,297:167−172. doi: 10.1016/j.cattod.2017.04.053
    [60]
    LI L, SONG L, FEI Z, et al. Effect of different supports on activity of Mn-Ce binary oxides catalysts for toluene combustion[J]. J Rare Earth,2020,40:645−651.
    [61]
    HUANG H, ZHANG C, WANG L, et al. Promotional effect of HZSM-5 on the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts[J]. Catal Sci Technol,2016,6:4260−4270. doi: 10.1039/C5CY02011E
    [62]
    HUANG H, LING W, JIN L, et al. Support effect on catalytic activity of VOCs combustion over supported Cu-Mn-Ce catalysts[J]. J Rare Earths,2012,30(3):295−300.
    [63]
    LIU X, ZHOU K, WANG L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc,2009,131:3140−3141. doi: 10.1021/ja808433d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return