Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Chuanming, LI Weijie, KANG Jincan, LIN Lina, LI Changxin, LI Lincai, ZOU Haoyu, ZHU Hongping. Catalytic performance of La-modified Cu/SiO2 in the hydrogenation of methyl acetate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 131-139. doi: 10.1016/S1872-5813(23)60382-2
Citation: ZHANG Chuanming, LI Weijie, KANG Jincan, LIN Lina, LI Changxin, LI Lincai, ZOU Haoyu, ZHU Hongping. Catalytic performance of La-modified Cu/SiO2 in the hydrogenation of methyl acetate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 131-139. doi: 10.1016/S1872-5813(23)60382-2

Catalytic performance of La-modified Cu/SiO2 in the hydrogenation of methyl acetate

doi: 10.1016/S1872-5813(23)60382-2
Funds:  The project was supported by National Natural Science Foundation of China (21972112, 22172123) and Productive and Researching Foundation of Fujian Province (2021H6002).
  • Received Date: 2022-07-03
  • Accepted Date: 2023-08-02
  • Rev Recd Date: 2022-08-04
  • Available Online: 2023-09-18
  • Publish Date: 2024-02-02
  • A series of Cu/SiO2 catalysts modified with lanthanum (La) (30Cu-nLa/SiO2, n=0, 0.5, 1 and 2) were synthesized using the ethanol (EtOH)-assisted ammonia-evaporation method; their catalytic performance in the gas-phase hydrogenation of methyl acetate (MeOAc) to produce ethanol (EtOH) was investigated. The results indicate that the catalytic performance of Cu/SiO2 can be greatly enhanced by La modification. In particular, the 30Cu-0.5La/SiO2 catalyst exhibits excellent performance in the MeOAc hydrogenation; under 230 °C, 2 MPa H2, an LHSV of 2 h−1 and an H2/MeOAc molar ratio of 20, the MeOAc conversion reaches 98.5%, with a total EtOH yield of 97.0%. The N2-sorption, XRD, ICP-OES, H2-TPR, FT-IR, TEM, XPS, and AES characterization results reveal that the introduced La metal has a strong interaction with Cu, which can promote the dispersion of the copper species on the SiO2 support. Moreover, the content of Cu+ is increased significantly, which can enhance the electronic interaction with MeOAc via the acyl and methoxide groups and thus promote the hydrogenation of MeOAc to EtOH.
  • loading
  • [1]
    ZHOU W, KANG J, CHENG K, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew Chem, Int Ed,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [2]
    王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展,2019,38(10):4497−4503. doi: 10.16085/j.issn.1000-6613.2019-0161

    WANG Hui, WU Zhilian, TAI Zhijun, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chem Ind Eng Prog,2019,38(10):4497−4503. doi: 10.16085/j.issn.1000-6613.2019-0161
    [3]
    WEHNER P, GUSTAFSON B. Catalytic hydrogenation of esters over Pd/ZnO[J]. J Catal,1992,135(2):420−426. doi: 10.1016/0021-9517(92)90043-H
    [4]
    WANG L, NIU X, CHEN J. SiO2 supported Ni-In intermetallic compounds: Efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols[J]. Appl Catal B: Environ,2020,278:119293. doi: 10.1016/j.apcatb.2020.119293
    [5]
    WANG Y, LIAO J, ZHANG J, et al. Hydrogenation of methyl acetate to ethanol by Cu/ZnO catalyst encapsulated in SBA-15[J]. AIChE J,2017,63(7):2839−2849.
    [6]
    KUMMER R, TAGLIBER V, SCHNEIDER H-W. Continuous production of ethanol and plural stage distillation of the same, US4454358[P]. 1984-06-12.
    [7]
    VANDENBERG R, PARMERTIER T E, ELKJÆR C F, et al. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts[J]. ACS Catal,2015,5(7):4439−4448.
    [8]
    ZHANG X, WILSON K, LEE A. Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars[J]. Chem Rev,2016,116(19):12328−12368.
    [9]
    ALONSO D M, WERRSREIN S G, DUMESIC J A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J]. Chem Soc Rev,2012,41(24):8075−8098.
    [10]
    BRANDS D S, POELS E K, BLIEK A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Appl Catal A: Gen,1999,184(2):279−289.
    [11]
    ZHANG Y, YE C, GUO C, et al. In2O3-modified Cu/SiO2 as an active and stable catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chin J Catal,2018,39(1):99−108.
    [12]
    YE C L, GUO C L, ZHANG J L. Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol[J]. Fuel Process Technol,2016,143:219−224.
    [13]
    REN Z, YOUNIS M N, ZHAO H, et al. Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chin J Chem Eng,2020,28(6):1612−1622.
    [14]
    LI F, LU C S, LI X N. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chin Chem Lett,2014,25(11):1461−1465.
    [15]
    YIN A, GUO X, DAI W L, et al. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl Catal A: Gen,2008,349(1/2):91−99.
    [16]
    ZHAO Y, ZHANG Y, WANG Y, et al. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Appl Catal A: Gen,2017,539:59−69.
    [17]
    HUANG Z, CUI F, XUE J, et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. J Phys Chem C,2010,114(39):16104−16113.
    [18]
    VANDERGTIFT C J G, ELBERSE P A, MULDER A, et al. Preparation of silica-supported copper-catalysts by means of deposition precipitation[J]. Appl Catal,1990,59(2):275−289.
    [19]
    李竹霞, 钱志刚, 赵秀阁, 等. 草酸二甲酯加氢Cu/SiO2催化剂前体的研究[J]. 华东理工大学学报(自然科学版),2004,30(6):613−617. doi: 10.3969/j.issn.1006-3080.2004.06.001

    LI Zhuxia, QIAN Zhigang, ZHAO Xiuge, et al. Research on the precursor of catalyst Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. J East China Univ Sci Technol, Nat Sci Ed,2004,30(6):613−617. doi: 10.3969/j.issn.1006-3080.2004.06.001
    [20]
    TOUPANCE T, KERMAREC M, LOUIS C. Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments[J]. J Phys Chem B,2000,104(5):965−972.
    [21]
    VANDERGTIFT C J G, WIELERS A F H, JOGHI B P J, et al. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles[J]. J Catal,1991,131(1):178−189.
    [22]
    杨文龙, 赵玉军, 王胜平, 等. 铜硅催化剂中层状硅酸铜的形成过程[J]. 化学工业与工程,2016,33(1):1−5. doi: 10.13353/j.issn.1004.9533.20141120

    YANG Wenlong, ZHAO Yujun, WANG Shengping, et al. Formation of copper phyllosilicate in silica supported copper catalyst[J]. Chem Ind Eng,2016,33(1):1−5. doi: 10.13353/j.issn.1004.9533.20141120
    [23]
    SING K S W. Reporting physisorption data for gas solid systems - with special reference to the determination of surface-area and porosity[J]. Pure Appl Chem,1982,54(11):2201−2218. doi: 10.1351/pac198254112201
    [24]
    刘淑芝, 徐培强, 李瑞达. 助剂La对Ni/γ-Al2O3催化剂加氢性能的影响[J]. 青岛科技大学学报(自然科学版),2016,37(4):388−391.

    LIU Shuzhi, XU Peiqiang, LI Ruida. Effect of La on Ni/γ-Al2O3 Catalyst in Benzene Hydrogenation[J]. J Qingdao Univ Sci Technol, Nat Sci Ed,2016,37(4):388−391.
    [25]
    LEI H, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel,2016,164:191−198.
    [26]
    WANG Z L, LIU Q S, YU J F, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods[J]. Appl Catal A: Gen,2003,239(1/2):87−94.
    [27]
    MARCHI A J, FIERRO J L G, SANTAMARIA J, et al. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: A study of the activity evolution and reactivation of the catalyst[J]. Appl Catal A: Gen,1996,142(2):375−386.
    [28]
    ZHENG X, LIN H, ZHENG J, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catal,2013,3(12):2738−2749.
    [29]
    GONG J, YUE H, ZHAO Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc,2012,134(34):13922−13925.
    [30]
    HUANG J J, DING T, MA K, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem,2018,10(17):3862−3871.
    [31]
    ZHU Y, KONG X, CAO D B, et al. The rise of calcination temperature enhances the performance of Cu catalysts: Contributions of support[J]. ACS Catal,2014,4(10):3675−3681.
    [32]
    XI Y, WANG Y, YAO D, et al. Impact of the oxygen vacancies on copper electronic state and activity of Cu-based catalysts in the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem,2019,11(11):2607−2614.
    [33]
    AI P, TAN M, YAMANE N, et al. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chem Eur J,2017,23(34):8252−8261.
    [34]
    GONG X, WANG M, FANG H, et al. Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters[J]. Chem Commun,2017,53(51):6933−6936. doi: 10.1039/C7CC02093G
    [35]
    YUE H, ZHAO Y, ZHAO S, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nat Commun,2013,4(1):2339. doi: 10.1038/ncomms3339
    [36]
    WANG Z Q, XU Z N, PENG S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal,2015,5(7):4255−4259. doi: 10.1021/acscatal.5b00682
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (309) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return