Volume 52 Issue 5
May  2024
Turn off MathJax
Article Contents
LI Na, MAO Shuhong, YAN Wenjun, ZHANG Jing. Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1
Citation: LI Na, MAO Shuhong, YAN Wenjun, ZHANG Jing. Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 698-706. doi: 10.1016/S1872-5813(23)60400-1

Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen

doi: 10.1016/S1872-5813(23)60400-1
Funds:  The project was supported by the Ph.D. Scientific Research Foundation of Taiyuan University of Science and Technology (20222084), the Foundation of Outstanding Doctoral Research in Shanxi (Jin) (20232028), the National Natural Science Foundation of China (22002181), the Shanxi Province Scientific and Technological Cooperation and Exchange Special Foundation (202204041101029) and the Shanxi Province Basic Research Program (Free Exploration 20210302123214).
  • Received Date: 2023-10-10
  • Accepted Date: 2023-11-07
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-21
  • Publish Date: 2024-05-01
  • Cuprous oxide (Cu2O) is an ideal visible light catalyst owing to its narrow band gap, environmental benignity and abundant storage; however, the fast recombination of photogenerated charge carriers and poor stability of Cu2O has impeded its application in photocatalysis. Herein, we demonstrate that Cu2O@C nanocomposite can spontaneously evolve from a methanol aqueous solution containing cupric ions under the induction of irradiation. Compared with the traditional carbon coating method, the Cu2O@C nanocomposite obtained by the photo-induced in-situ synthesis can reserve superior original characteristics of the semiconductor under mild reaction conditions, promote the charge transfer and enhance the separation efficiency of charge carriers; in addition, the carbon shells can also effectively prevent Cu2O from photo-corrosion. As a result, the Cu2O@C nanocomposite exhibits excellent photocatalytic activity in the hydrogen evolution in comparison with the Cu2O particles; the H2 evolution rate over the Cu2O@C nanocomposite reaches 1.28 mmol/(g·h) under visible light, compared with the value of 0.065 mmol/(g·h) over Cu2O. Moreover, the Cu2O@C nanocomposite displays good cycle stability, viz., without any deactivation in the catalytic activity after five cycles.
  • loading
  • [1]
    ZHAO Q, WANG K, WANG J, et al. Cu2O nanoparticle hyper-cross-linked polymer composites for the visible-Light photocatalytic degradation of methyl orange[J]. ACS Appl Nano Materials,2019,2(5):2706−2712. doi: 10.1021/acsanm.9b00210
    [2]
    TAN X, YU C, ZHAO C, et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Appl Mater Interfaces,2019,11(10):9904−9910.
    [3]
    SIOL S, HELLMANN J C, TILLEY S D, et al. Band alignment engineering at Cu2O/ZnO heterointerfaces[J]. ACS Appl Mater Interfaces,2016,8(33):21824−21831.
    [4]
    HUANG C, YE W, LIU Q, et al. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction[J]. ACS Appl Mater Interfaces,2014,6(16):14469−14476.
    [5]
    LI Q, LI X, WAGEH S, et al. CdS/Graphene nanocomposite photocatalysts[J]. Adv Energy Mater,2015,5(14):1500010−1500038. doi: 10.1002/aenm.201500010
    [6]
    MA F, WU Y, SHAO Y, et al. 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets[J]. Nano Energy,2016,27:466−474. doi: 10.1016/j.nanoen.2016.07.014
    [7]
    LIU R, WANG P, WANG X, et al. UV and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst[J]. J Phys Chem C,2012,116(33):17721−17728. doi: 10.1021/jp305774n
    [8]
    RUDD A L, BRESLIN C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta,2000,45(10):1571−1579. doi: 10.1016/S0013-4686(99)00322-9
    [9]
    HAN C, YANG M Q, WENG B, et al. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon[J]. Phys Chem Chem Phy,2014,16(32):16891−16903. doi: 10.1039/C4CP02189D
    [10]
    WANG Y, BAI X, QIN H, et al. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion[J]. ACS Appl Mater Interfaces,2016,8(27):17212−17219.
    [11]
    ZHANG P, LIU H, LI X. Plasmonic CuCo/carbon dots: An unconventional photocatalyst used for photocatalytic overall water splitting[J]. ACS Sustainable Chem Eng,2020,8(49):17979−17987.
    [12]
    HU Y, GAO X, YU L, et al. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity[J]. Angew Chem Inter Ed,2013,52(21):5636−5639. doi: 10.1002/anie.201301709
    [13]
    LI Y, LI J. Carbon-coated macroporous Sn2P2O7 as anode materials for Li-ion battery[J]. J Phys Chem C,2008,112(36):14216−14219. doi: 10.1021/jp804438v
    [14]
    GUO Y, WANG H, HE C, et al. Uniform carbon-coated ZnO nanorods: Microwave-assisted preparation, cytotoxicity, and photocatalytic activity[J]. Langmuir,2009,25(8):4678−4684. doi: 10.1021/la803530h
    [15]
    YANG R, ZHAO W, ZHENG J, et al. One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage[J]. J Phys Chem C,2010,114(47):20272−20276. doi: 10.1021/jp107396a
    [16]
    JIANG L, QU Y, REN Z, et al. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries[J]. ACS Appl Mater Interfaces,2015,7(3):1595−1601.
    [17]
    DOZZI M V, CANDEO A, MARRA G, et al. Effects of photodeposited gold vs platinum nanoparticles on N, F-doped TiO2 photoactivity: A time-resolved photoluminescence investigation[J]. J Phys Chem C,2018,122(26):14326−14335. doi: 10.1021/acs.jpcc.8b02997
    [18]
    MAEDA K, TERAMURA K, LU D, et al. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting[J]. J Phys Chem C,2007,111(20):7554−7560. doi: 10.1021/jp071056j
    [19]
    HUA Q, SHANG D, ZHANG W, et al. Morphological evolution of Cu2O nanocrystals in an acid solution: Stability of different crystal planes[J]. Langmuir,2011,27(2):665−671. doi: 10.1021/la104475s
    [20]
    PAL J, SASMAL A K, GANGULY M, et al. Surface plasmon effect of Cu and presence of n-p heterojunction in oxide nanocomposites for visible light photocatalysis[J]. J Phys Chem C,2015,119(7):3780−3790. doi: 10.1021/jp5114812
    [21]
    XUE Y, GUO Y, YI Y, et al. Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy,2016,30:858−866. doi: 10.1016/j.nanoen.2016.09.005
    [22]
    BUSSER G W, MEI B, POUGIN A, et al. Photodeposition of copper and chromia on gallium oxide: The role of co-catalysts in photocatalytic water splitting[J]. ChemSusChem,2014,7(4):1030−1034. doi: 10.1002/cssc.201301065
    [23]
    PORRAS J, GIANNAKIS S, TORRES-PALMA R A, et al. Fe and Cu in humic acid extracts modify bacterial inactivation pathways during solar disinfection and photo-Fenton processes in water[J]. Appl Catal B: Environ,2018,235:75−83. doi: 10.1016/j.apcatb.2018.04.062
    [24]
    JIANG X, ZHANG M, SHI W, et al. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition[J]. Nanoscale Res Lett,2014,9:219−224. doi: 10.1186/1556-276X-9-219
    [25]
    JI X F, XU H P, LIANG S D, et al. 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution[J]. Int J Hydrogen Energy,2022,47(40):17640−17649. doi: 10.1016/j.ijhydene.2022.03.241
    [26]
    WU J X, XI X X, ZHU W, et al. Boosting photocatalytic hydrogen evolution via regulating Pt chemical states[J]. Chem Eng J,2022,442:136334−136339. doi: 10.1016/j.cej.2022.136334
    [27]
    SCHWARZE M, STELLMACH D, SCHRODER M, et al. Quantification of photocatalytic hydrogen evolution[J]. Phys Chem Chem Phys,2013,15(10):3466−3472. doi: 10.1039/c3cp50168j
    [28]
    FLORES-ROJAS E, SAMANIEGO-BENITEZ J E, SERRATO R, et al. Transformation of nanostructures Cu2O to Cu3Se2 through different routes and the effect on photocatalytic properties[J]. ACS Omega,2020,5(32):20335−20342. doi: 10.1021/acsomega.0c02299
    [29]
    MAHMOUD M A, QIAN W, EL-SAYED M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett,2011,11(8):3285−3289. doi: 10.1021/nl201642r
    [30]
    WANG Y, ZHANG YN, ZHAO G, et al. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2, 4, 6-trichlorophenol[J]. ACS Appl Mater Interfaces,2012,4(8):3965−3972.
    [31]
    ZHENG Y, ZHANG L, GUAN J, et al. Controlled synthesis of Cu0/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O[J]. ACS Sustainable Chem Eng,2021,9(4):1754−1761.
    [32]
    HAMID S, DILLERT R, BAHNEMANN D W. Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over Co-catalyst-Loaded TiO2: Shifting the product distribution[J]. J Phys Chem C,2018,122(24):12792−12809. doi: 10.1021/acs.jpcc.8b02691
    [33]
    LIU B, NING L, ZHANG C, et al. Enhanced visible-light photocatalytic H2 evolution in Cu2O/Cu2se multilayer heterostructure nanowires having {111} facets and physical mechanism[J]. Inorg Chem,2018,57(13):8019−8027. doi: 10.1021/acs.inorgchem.8b01197
    [34]
    WEI T, ZHU Y N, AN X, et al. Defect modulation of Z-Scheme TiO2/Cu2O photocatalysts for durable water splitting[J]. ACS Catal,2019,9(9):8346−8354. doi: 10.1021/acscatal.9b01786
    [35]
    YIN W J, BAI L J, ZHU Y Z et al. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution[J]. ACS Appl Mater Interfaces,2016,8(35):23133−23142.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return