Volume 52 Issue 5
May  2024
Turn off MathJax
Article Contents
LI Cuicui, HAN Rui, ZHOU Anning, ZHANG Ningning, GUO Kaiqiang, CHEN Heng, CHEN Xiaoyi, LI Zhen, WANG Junzhe. Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 630-646. doi: 10.1016/S1872-5813(23)60402-5
Citation: LI Cuicui, HAN Rui, ZHOU Anning, ZHANG Ningning, GUO Kaiqiang, CHEN Heng, CHEN Xiaoyi, LI Zhen, WANG Junzhe. Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 630-646. doi: 10.1016/S1872-5813(23)60402-5

Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag

doi: 10.1016/S1872-5813(23)60402-5
Funds:  The project was supported by National Natural Science Foundation of China (52374279) and Natural Science Foundation of Shaanxi Province (2023-YBGY-055).
  • Received Date: 2023-09-18
  • Accepted Date: 2023-11-05
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-12-13
  • Publish Date: 2024-05-01
  • Coal gasification fine slag is one of the by-products from clean and efficient utilization of coal, and its resource utilization is extremely urgent. In this work, a high carbon fraction with a fixed carbon content higher than 60% was obtained by simple sieving of gasification fine slag, from which a porous material was prepared by ultrasonic acid leaching method. The adsorption performance of porous materials, being used as treatment of radioactive iodine in nuclear wastewater, is characterized by iodine adsorption value. The effects of ultrasound time, ultrasound power, acid concentration, and temperature on the iodine adsorption performance and compositional structure of the porous materials were systematically investigated by combining the results of SEM, BET, XRD, and FTIR. The mechanisms of ultrasound-enhanced acid leaching on compositional structure of residual carbon and migration and transformation laws of the ash constituents were explored and summarized. The results show that the porous material prepared under conditions of acid concentration of 4 mol/L, acid immersion temperature of 50 ℃, ultrasonic power of 210 W, and ultrasonic time of 1.5 h has the best iodine adsorption performance of 468.53 mg/g, with a specific surface area of 474.97 m2/g, and possesses a rich pore structure with predominant mesopores. The order of each factor on the iodine adsorption performance is: sonication time > acid concentration > sonication power > acid immersion temperature. The mechanism of ultrasonic enhanced acid leaching is that ultrasonic cavitation and mechanical wave action firstly enhance dissociation of carbon-ash adherent particles, thus making desorption of ash particles blocked in pore channels of the gasification slag to increase its connectivity; secondly, lead to generation of cracks on surface of the carbon and ash particles to enhance accessibility of inorganic components inside the carbon particles; and thirdly, enhance the acid leaching process by increasing mass transfer rate to strengthen leaching effect of inorganic components in the gasification slag.
  • loading
  • [1]
    MENG J, LIAO W, ZHANG G. Emerging CO2-mineralization technologies for co-utilization of industrial solid waste and carbon resources in China[J]. Minerals,2021,11(3):274. doi: 10.3390/min11030274
    [2]
    吕飞勇, 初茉, 易浩然, 等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展,2022,41(5):2372−2378. doi: 10.16085/j.issn.1000-6613.2021-1056

    LV Feiyong, CHU Mo, YI Haoran, et al. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes[J]. Chem Ind Eng Prog,2022,41(5):2372−2378. doi: 10.16085/j.issn.1000-6613.2021-1056
    [3]
    HAN R, ZHOU A N, ZHANG N N, et al. Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review[J]. Int J Min Met Mater,2024,31:217−230. doi: 10.1007/s12613-023-2753-z
    [4]
    WU S, HUANG S, WU Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. J Energy Inst,2015,88(1):93−103. doi: 10.1016/j.joei.2014.04.001
    [5]
    高影, 赵伟, 周安宁, 等. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报,2022,50(8):954−965. doi: 10.1016/S1872-5813(22)60007-0

    GAO Ying, ZHAO Wei, ZHOU Anning, etal. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag[J]. J Fuel Chem Technol,2022,50(8):954−965. doi: 10.1016/S1872-5813(22)60007-0
    [6]
    WAGNER N J, MATJIE R H, SLAGHUIS J H, et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [7]
    GU Y, QIAO X. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous Mesoporous Mater,2019,276:303−307. doi: 10.1016/j.micromeso.2018.06.025
    [8]
    REN L, DING L, GUO Q, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review[J]. J Clean Prod, 2023: 136554.
    [9]
    LIU S, CHEN X, AI W, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. J Clean Prod,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060
    [10]
    DU M, HUANG J, LIU Z, et al. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel,2018,224:178−185. doi: 10.1016/j.fuel.2018.03.073
    [11]
    ZHU D, ZUO J, JIANG Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Sci Total Environ,2020,707:136102. doi: 10.1016/j.scitotenv.2019.136102
    [12]
    GONH X, JIANG W, HU S, et al. Comprehensive utilization of foundry dust: Coal powder and clay minerals separation by ultrasonic-assisted flotation[J]. J Hazard Mater,2021,402:124124. doi: 10.1016/j.jhazmat.2020.124124
    [13]
    WANG W, LIU D, TU Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel,2020,278:118195. doi: 10.1016/j.fuel.2020.118195
    [14]
    TURAN M D, SARI Z A, DEMIRASLAN A. Ultrasound-assisted leaching and kinetic study of blended copper slag[J]. Metall Mater Trans B,2019,50:1949−1956.
    [15]
    GUO Z, GUO P, SU G, et al. Study on ultrasonically-enhanced sulfuric acid leaching of nickel from nickel-containing residue[J]. Crystals,2021,11(7):810. doi: 10.3390/cryst11070810
    [16]
    KURISINGAL J F, YUN H, HONG C S. Porous organic materials for iodine adsorption[J]. J Hazard Mater, 2023: 131835.
    [17]
    郭燕鑫. 共价有机框架材料的制备及其对碘吸附性能研究[D]. 西宁: 青海师范大学, 2023.

    GUO Yanxin. Preparation of covalent organic framework materials and study on their adsorption properties for iodine[D]. Xining: Qinghai Normal University, 2023.
    [18]
    程富江. 废纸再生脱墨污泥制备活性炭及其性能研究[D]. 天津: 天津科技大学, 2018.

    CHENG Fujiang. Study on preparation and characterization of activated carbon from deinking sludge[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [19]
    ZHANG T, YUE X, GAO L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization and iodine adsorption[J]. J Clean Prod,2017,144(FEB.15):220−227.
    [20]
    吴倩, 刘元元, 傅皓. 煤质活性炭碘吸附值标准样品的研制[J]. 煤质技术,2022,37(4):43−49.

    WU Qian, LIU Yuanyuan, FU Hao. Research on preparation of standard reference material of coal-activated carbon for iodine adsorption[J]. Goal Qual Technol,2022,37(4):43−49.
    [21]
    YU W, WANG X, LIU L, et al. Experimental study on pore structure and mechanical dehydration of coal gasification fine slag[J]. Energy Source Part A,2022,44(2):3629−3640. doi: 10.1080/15567036.2022.2069177
    [22]
    MIAO Z, GUO F, ZHAO X, et al. Effects of acid treatment on physicochemical properties and gasification reactivity of fine slag from Texaco gasifier[J]. Chem Eng Res Des,2021,169:1−8. doi: 10.1016/j.cherd.2021.01.020
    [23]
    尹艳山, 尹杰, 张巍, 等. 红外和拉曼光谱的煤灰矿物组成研究[J]. 光谱学与光谱分析,2018,38(3):789−793.

    YIN Yanshan, YIN Jie, ZHANG Wei, et al. Characterization of mineral matter in coal ashes with infrared and Raman spectroscopy[J]. Spectrosc Spect Anal,2018,38(3):789−793.
    [24]
    LI T, HE S, SHEN T, et al. Using one-step acid leaching for the recovering of coal gasification fine slag as functional adsorbents: preparation and performance[J]. Int J Env Res Pub He,2022,19(19):12851. doi: 10.3390/ijerph191912851
    [25]
    ZHENG X, LI S, LIU B, et al. A study on the mechanism and kinetics of ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust[J]. Nat Mater,2022,15(17):5969.
    [26]
    ZHANG J, ZUO J, JIANG Y, et al. Kinetic analysis on the mesoporous formation of coal gasification slag by acid leaching and its thermal stability[J]. Solid State Sci,2020,100:106084. doi: 10.1016/j.solidstatesciences.2019.106084
    [27]
    袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型, 理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402−1417.

    YUAN Shuai, ZHAO Lixin, MENG Haibo, et al. The main types of biochar and their properties and expectative researches[J] Plant Nutr Fert Sci, 2016, 22(5): 1402−1417.
    [28]
    CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environ Sci Technol,2013,47(18):10349−10355.
    [29]
    李肽脂, 吴锋, 李辉, 等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报,2022,16(7):2356−2364. doi: 10.12030/j.cjee.202202138

    LI Taizhi, WU Feng, LI Hui, et al. Preparation and microscopic mechanism of composite activated coal gasification slag-based cementitious materials[J]. J Environ Eng,2022,16(7):2356−2364. doi: 10.12030/j.cjee.202202138
    [30]
    屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973. doi: 10.13225/j.cnki.jccs.2021.0405

    QU Huisheng, SU Yonglu, LIU Lang, et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. J China Coal Soc,2022,47(5):1958−1973. doi: 10.13225/j.cnki.jccs.2021.0405
    [31]
    沙东, 王宝民, 潘宝峰, 等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报,2024,in press. doi: 10.13801/j.cnki.fhclxb.20230911.003

    SHA Dong, WANG Baomin, PAN Baofeng, et al. A review on reinforcing and toughening methods of geopolymers[J]. Acta Mater Compost Sin,2024,in press. doi: 10.13801/j.cnki.fhclxb.20230911.003
    [32]
    崔维, 易武平, 蔡安. 超声波强化浸出铝灰中氯的机理[J]. 过程工程学报,2017,17(4):757−762. doi: 10.12034/j.issn.1009-606X.216367

    CUI Wei, YI Wuping, CAI An. Mechanism of ultrasound-assisted leaching chlorine from aluminum dross[J]. Chin J Process Eng,2017,17(4):757−762. doi: 10.12034/j.issn.1009-606X.216367
    [33]
    MASOUM H G, RASTEGAR S O, KHAMFOROUSH M. Ultrasound-assisted leaching of vanadium and yttrium from coal ash: Optimization, kinetic and thermodynamic study[J]. Chem Eng Technol,2021,44(12):2249−2256. doi: 10.1002/ceat.202100297
    [34]
    JIANG J, SUN S, WANG D, et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process[J]. Int J Mach Tool Manu,2020,156:103595. doi: 10.1016/j.ijmachtools.2020.103595
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return