Volume 49 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WANG Ya-ke, ZHU Bao-shun, LI Guo-min, LIANG Li-ping. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014
Citation: WANG Ya-ke, ZHU Bao-shun, LI Guo-min, LIANG Li-ping. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014

Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue

doi: 10.19906/j.cnki.JFCT.2021014
Funds:  The project was supported by Shanxi Postgraduate Innovation Project (2020SY415), the National Natural Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119), the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi (2019L0617)
  • Received Date: 2020-10-09
  • Rev Recd Date: 2020-11-17
  • Publish Date: 2021-02-08
  • Mullite-based ceramsite was prepared from coal gangue and bauxite. With ceramsite, ferric nitrite and glucose as raw materials, Fe/C/Mullite-based ceramics composite material was prepared by wet chemical synthesis technology combined with calcination at 900 ℃ in argon atmosphere. In the composite materials, C with a certain degree of graphitization covered the surface of the ceramsite, and Fe particles were uniformly dispersed in the grid of C layer. Due to the dielectric loss caused by the conductive polarization derived from the Fe particles and graphite, as well as the interfacial polarization derived from the interface between loading substance and matrix, the material showed enhanced absorption performance. When the ferric nitrite concentration in the initial solution was 0.1 mol/L, the sample FeCM-0.1 exhibited the best absorbing properties. The minimum reflection loss value of −13.9 dB was obtained at 14.6 GHz with a matching thickness of only 2.0 mm and the corresponding effective bandwidth was 3.6 GHz. This study provides a new way for the production of low-cost microwave absorbing materials and the resource utilization of solid waste coal gangue.
  • loading
  • [1]
    王庆贺, 李喆, 周梅, 张玉琢. 自燃煤矸石骨料取代率对钢筋混凝土梁受弯性能的影响[J]. 建筑结构学报,2020,41(12):64−74.

    WANG Qing-he, LI Zhe, ZHOU Mei, ZHANG Yu-zhuo. Effects of spontaneous-combustion coal gangue aggregate replacement ratio on flexural behavior of reinforced concrete beams[J]. J Build Struct,2020,41(12):64−74.
    [2]
    李文龙. 掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J]. 建筑结构,2020,50(13):49−53.

    LI Wen-long. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Build Struct,2020,50(13):49−53.
    [3]
    刘灏, 李青, 黄秉章, 黄榜彪, 李杰能, 王锐, 谢伟标, 梁晓前. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报,2019,33(S2):229−232.

    LIU Hao, LI Qing, HUNG Bing-zhang, HUANG Bang-biao, LI Jie-neng, WANG Rui, XIE Wei-biao, LIANG Xiao-qian. Study on durability of sintered shale brick from coal gangue[J]. Mater Rev,2019,33(S2):229−232.
    [4]
    孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报,2020,34(9):9055−9063.

    KONG Jing, GAO Hong, LI Yan, WANG Xiang-ke, ZHANG Jing-jing, HE Duan-peng, WU Bing, XING Yan. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Mater Rev,2020,34(9):9055−9063.
    [5]
    陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449

    CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449
    [6]
    ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805(15):1071−1080.
    [7]
    尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程,2019,47(5):122−128.

    SHANG Kai, WU Zhi-hong, ZHANG Lu-ping, WANG Qian, ZHENG Hai-kang. Absorbing performance of MoSi2/BC composites using by bamboo charcoal template[J]. J Mater Eng,2019,47(5):122−128.
    [8]
    何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能[J]. 物理学报,2018,67(22):9−28+438.

    HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin-Chem,2018,67(22):9−28+438.
    [9]
    李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报,2019,33(S2):73−77.

    LI He, CHEN Kai-bin, LUO Ying-tao, SUN Li-zhen, DU Juan. Absorbing mechanism and progress of carbon-based electromagnetic wave absorbing nanocomposites[J]. Mater Rev,2019,33(S2):73−77.
    [10]
    SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438−444. doi: 10.1016/j.carbon.2020.02.031
    [11]
    WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946. doi: 10.1039/C4TA02815E
    [12]
    WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452. doi: 10.1021/jp4000544
    [13]
    康越, 原博, 马天, 楚增勇, 张政军. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报,2018,33(12):1259−1273. doi: 10.15541/jim20180178

    KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273. doi: 10.15541/jim20180178
    [14]
    王生浩, 文峰, 郝万军, 曹阳. 电磁污染及电磁辐射防护材料[J]. 环境科学与技术,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039

    WANG Sheng-hao, WEN Feng, HAO Wan-jun, CAO-Yang. Electromagnetism pollution and protection materials for electromagnetic radiation[J]. Environ Sci Technol,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039
    [15]
    SY/T5108−2014, 水力压裂和砾石充填作业用支撑剂性能测试方法[S].

    SY/T5108−2014, Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations[S].
    [16]
    LIU X X, ZHANG Z Y, WU Y P. Absorption properties of carbon black/silicon carbide microwave absorbers[J]. Composites Part B,2011,42(2):326−329. doi: 10.1016/j.compositesb.2010.11.009
    [17]
    LUO N, LI X J, WANG X H, YAN H, ZHANG C, WANG H. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [18]
    YANG T Z, QIAN T, WANG M F, SHEN X W, XU N, SUN Z Z, YAN C L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries[J]. Adv Mater,2016,28(3):539−545. doi: 10.1002/adma.201503221
    [19]
    WEN F S, HOU H, XING J Y, ZHANG X Y, SU Z B, YUAN S J, LIU Z Y. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber[J]. Carbon,2015,89:372−377. doi: 10.1016/j.carbon.2015.03.057
    [20]
    YANG Y, GUO Z, ZHANG H, HUANG D Q, GU J L, HUANG Z H, KANG F Y, T. ALAN H, RUTLEDG G C. Electrospun magnetic carbon composite fibers: synthesis and electromagnetic wave absorption characteristics[J]. J Appl Polym Sci,2013,127(6):4288−4295. doi: 10.1002/app.38027
    [21]
    WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6(12):11009−11017. doi: 10.1021/nn304630h
    [22]
    COLE K S, COLE R H. Dispersion and absorption in dielectrics I. alternating current characteristics[J]. J Chem Phys,1941,9(4):341. doi: 10.1063/1.1750906
    [23]
    SU Q M, ZHONG G, LI J, DU G H, XU B S. Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties[J]. Appl Phys A,2012,106(1):59−65. doi: 10.1007/s00339-011-6641-4
    [24]
    WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115(29):14025−14030. doi: 10.1021/jp202078p
    [25]
    AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J]. J Appl Phys,1991,69(11):7762−7764. doi: 10.1063/1.347502
    [26]
    LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous Mesoporous Mater,2015,211(15):97−104.
    [27]
    WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273. doi: 10.1016/j.carbon.2018.03.081
    [28]
    WANG X L, GENG Q Y, SHI G M, XU G, YU J, GUAN Y YZHANG Y J, LI D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption[J]. J Alloy Compd,2019,803(30):818−825.
    [29]
    LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.
    [30]
    QI X S, YANG Y, ZHONG W, QIN C, DENG Y, CHAKTONG A, DU Y W. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption[J]. Carbon,2010,48(12):3512−3522. doi: 10.1016/j.carbon.2010.05.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (673) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return