Volume 49 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
LIANG Chang-ming, ZAHNG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016
Citation: LIANG Chang-ming, ZAHNG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016

Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst

doi: 10.19906/j.cnki.JFCT.2021016
Funds:  The project was supported by National Key Research and Development Program of China (2019YFD1100600), National Natural Science Foundation of China (51606113) and Natural Science Foundation of Shandong Province (ZR2020ME185)
More Information
  • Corresponding author: Tel: 18678191880, E-mail: lizhihe@sdut.edu.cn
  • Received Date: 2020-10-15
  • Rev Recd Date: 2020-11-20
  • Publish Date: 2021-02-08
  • In order to realize high value utilization of wood vinegar, a series of Ni based catalysts with different Co contents prepared by impregnation method were tested in a fixed bed reactor. The effects of liquid space-time velocity, reaction temperature and Ni/Co ratio on hydrogen production, carbon conversion, H2 selectivity and carbon deposition were investigated. The catalysts were characterized by XRF, H2-TPR, SEM and elemental analysis. The results show that the gas production increases with the increase of space-time velocity of liquid, but the catalyst deactivation is accelerated when the space-time velocity of liquid is too high. High temperature is conducive to the catalytic reforming of wood vinegar to produce hydrogen. When the temperature reaches 900 °C, the hydrogen yield is the highest. With the increase of cobalt content, the carbon deposition and hydrogen yield decrease. Therefore, when the liquid space velocity is 60 h−1 and the temperature is 800 °C, the Ni-0.5Co/Al2O3 catalyst is most conducive to the hydrogen production experiment of wood vinegar.
  • loading
  • [1]
    SHARMA S, GHOSHAL S K. Hydrogen the future transportation fuel: From production to applications[J]. Renewable Sustainable Energy Rev,2015,43:1151−1158. doi: 10.1016/j.rser.2014.11.093
    [2]
    WU Q, ZHANG S, HOU B. Study on the preparation of wood vinegar from biomass residues by carbonization process[J]. Bioresour Technol,2015,179:98−103. doi: 10.1016/j.biortech.2014.12.026
    [3]
    王海英, 杨国亭, 周丹. 木醋液研究现状及其综合利用[J]. 东北林业大学学报,2004,9(5):55−57. doi: 10.3969/j.issn.1000-5382.2004.05.020

    WANG Hai-ying, YANG Guo-ting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. J Northeast For Univ,2004,9(5):55−57. doi: 10.3969/j.issn.1000-5382.2004.05.020
    [4]
    ORAMAHI H A, YOSHIMURA T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl[J]. J Wood Sci,2013,59(4):344−350. doi: 10.1007/s10086-013-1340-8
    [5]
    MUNGKUNKAMCHAO T, KESMALA T, PIMRATCH S, TOOMSAN B, JOTHITYANGKOON D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J]. Sci Hortic,2013,154:66−72. doi: 10.1016/j.scienta.2013.02.020
    [6]
    卢辛成, 蒋剑春, 孙康, 孙云娟. 木醋液的精制与应用研究进展[J]. 林产化学与工业,2017,37(3):1−9. doi: 10.3969/j.issn.0253-2417.2017.03.001

    LU Xin-cheng, JIANG Jian-chun, SUN Kang, SUN Yun-juan. Review on preparation and application of wood vinegar[J]. Chem Ind Forest Prod,2017,37(3):1−9. doi: 10.3969/j.issn.0253-2417.2017.03.001
    [7]
    蒋恩臣, 赵晨希, 秦丽元, 陈爱慧. 松子壳连续热解制备木醋液试验[J]. 农业工程学报,2014,30(5):262−269. doi: 10.3969/j.issn.1002-6819.2014.05.033

    JIANG En-chen, ZHAO Chen-xi, QIN Li-yuan, CHEN Ai-hui. Experiment of wood vinegar produced from pine nut shell continuous pyrolysis[J]. Trans CSAE,2014,30(5):262−269. doi: 10.3969/j.issn.1002-6819.2014.05.033
    [8]
    XU X, JIANG E, LI B, WANG M. Hydrogen production from wood vinegar of camellia oleifera shell by Ni/M/γ-A12O3 catalyst[J]. Catal Commun,2013,39:106−114. doi: 10.1016/j.catcom.2013.04.024
    [9]
    MEDRANO J A, OLIVA M, RUIZ J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011,36:2215−2224. doi: 10.1016/j.energy.2010.03.059
    [10]
    XU X, JIANG E, SUN Y, LI Z. Influence of mixed supports on the steam catalytic reforming of wood vinegar[J]. Energy Fuels,2017,31(2):1678−1688. doi: 10.1021/acs.energyfuels.6b03000
    [11]
    FU P, ZHANG A, LUO S, YI W, HU S, ZHANG Y. Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production[J]. ACS Omega,2019,4(8):13585−13593. doi: 10.1021/acsomega.9b01985
    [12]
    ZHANG A, LI Z, YI W, FU P, WANG L, LIANG C, LUO S. Study the reaction mechanism of catalytic reforming of acetic acid through the instantaneous gas production[J]. Int J Hydrogen Energy,2019,44(39):21279−21289. doi: 10.1016/j.ijhydene.2019.06.060
    [13]
    LI L, JIANG B, TANG D, ZHANG Q, ZHEG Z. Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1−x CexNiO3 perovskite[J]. Int J Hydrogen Energy,2018,43(14):6795−6803. doi: 10.1016/j.ijhydene.2018.02.128
    [14]
    SIANG J, LEE C, WANG C. Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: effect of different ceria supports[J]. Int J Hydrogen Energy,2010,35(8):3456−3462. doi: 10.1016/j.ijhydene.2010.01.067
    [15]
    ZHANG B, TANG X, LI Y. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts[J]. Catal Commun,2006,7(6):367−372. doi: 10.1016/j.catcom.2005.12.014
    [16]
    HE S, MEI Z, LIU N. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor[J]. Int J Hydrogen Energy,2017,42(21):14429−14438. doi: 10.1016/j.ijhydene.2017.02.115
    [17]
    XIE H Q, YU Q B, YAO X. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts[J]. J Energy Chem,2015,24(3):299−308. doi: 10.1016/S2095-4956(15)60315-1
    [18]
    CONSTANTINOU D A, EFSTATHIOU A M. Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts[J]. Appl Catal B: Environ,2010,96(3/4):276−289. doi: 10.1016/j.apcatb.2010.02.007
    [19]
    ARTETXE M, NAHIL M A, OLAZAR M, WILLIAMSP T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst[J]. Fuel,2016,184:629−636. doi: 10.1016/j.fuel.2016.07.036
    [20]
    王一双, 陈明强, 刘少敏, 杨忠连, 沈朝萍, 刘珂. 负载NiO-Fe2O3的凹凸棒石对生物油模型物催化重整制氢性能的影响[J]. 燃料化学学报,2015,43(12):1470−1475. doi: 10.3969/j.issn.0253-2409.2015.12.010

    WANG Yi-shuang, CHEN Ming-qiang, LlU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via cataylic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol,2015,43(12):1470−1475. doi: 10.3969/j.issn.0253-2409.2015.12.010
    [21]
    NOGUEIRA F, ASSAF P, CARVALHO H, ASSAF E. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Appl Catal B: Environ,2014,160(7):188−199.
    [22]
    HE Z, YANG M, WANG X, ZHAO Z, DUAN A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming[J]. Catal Today,2012,194(1):2−8. doi: 10.1016/j.cattod.2012.05.004
    [23]
    XU X, ZHANG C, LIU Y, ZHAI Y, ZHANG R, TANG X. Catalytic reforming of acetic acid as a model compound of bio-oil for hydrogen production over Ni-CeO2-MgO/olivine catalysts[J]. Environ Prog Sustainable Energy,2015,34(3):915−922. doi: 10.1002/ep.12062
    [24]
    NABGAN W, ABDULLAH T A T, MAT R. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst[J]. Int J Hydrogen Energy,2017,42(14):8975−8985. doi: 10.1016/j.ijhydene.2016.04.176
    [25]
    ZHANG F, WANG M, ZHU L. A comparative research on the catalytic activity of La2O3 and γ-Al2O3 supported catalysts for acetic acid steam reforming[J]. Int J Hydrogen Energy,2017,42(6):3667−3675. doi: 10.1016/j.ijhydene.2016.06.264
    [26]
    WURZLER G T, RABELO-ETO R C, MATTOS L V. Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts[J]. Appl Catal A: Gen,2016,518:115−128. doi: 10.1016/j.apcata.2015.11.020
    [27]
    吕衍安, 赵星岭, 索掌怀, 廖卫平, 金明善. 负载Ni催化剂上低温甘油蒸汽重整制氢[J]. 燃料化学学报,2015,43(6):684−691. doi: 10.3969/j.issn.0253-2409.2015.06.007

    LV Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. J Fuel Chem Technol,2015,43(6):684−691. doi: 10.3969/j.issn.0253-2409.2015.06.007
    [28]
    MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, BELLOT NORONHA F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today,2015,242:35−49. doi: 10.1016/j.cattod.2014.05.045
    [29]
    ZHANG Z M, WANG Y R, SUN K. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates[J]. J Energy Chem,2020,43:208−219. doi: 10.1016/j.jechem.2019.08.023
    [30]
    VICENTE J, MONTERO C, EREÑA J, AZKOITI M J, BILBAO J, GAYUBO A G. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor[J]. Int J Hydrogen Energy,2014,39(24):12586−12596. doi: 10.1016/j.ijhydene.2014.06.093
    [31]
    ZHANG A, LIANG C, WANG L, LI Z, YI W, FU P, WANG S. Study on the trigger mechanism and carbon behavior of catalytic reforming of wood vinegar[J]. Int J Hydrogen Energy,2020,45(29):14669−14678. doi: 10.1016/j.ijhydene.2020.03.196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (353) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return