Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
WANG Zhan-hui, LING Li-xia, WANG Jun-gang, SUN De-kui, HOU Bo, LI De-bao, ZHANG Ri-guang, WANG Bao-jun. Study on the effect of active sites of ethanol synthesis from syngas over RhCu bimetallic catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 358-365. doi: 10.19906/j.cnki.JFCT.2021017
Citation: WANG Zhan-hui, LING Li-xia, WANG Jun-gang, SUN De-kui, HOU Bo, LI De-bao, ZHANG Ri-guang, WANG Bao-jun. Study on the effect of active sites of ethanol synthesis from syngas over RhCu bimetallic catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 358-365. doi: 10.19906/j.cnki.JFCT.2021017

Study on the effect of active sites of ethanol synthesis from syngas over RhCu bimetallic catalyst

doi: 10.19906/j.cnki.JFCT.2021017
Funds:  The project was supported by the National Natural Science Foundation of China (21736007), the National Natural Science Foundation of China (21576178) and Shanxi Scholarship Council of China (2016-030)
  • Received Date: 2020-11-03
  • Rev Recd Date: 2020-11-30
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • Developing efficient and stable bimetallic catalysts has been a highly promising challenge for the direct synthesis of ethanol from syngas in recent years. In this study, a series of RhCu/P25 bimetallic catalysts with different Rh contents were prepared by combining the urea-assisted gel method and the impregnation method, and their performance in ethanol synthesis from syngas was studied. The results show that Rh-modified Cu-based catalyst can effectively promote the ethanol production. However, when the active sites of Rh and Cu are in close contact, the reaction products are mainly methane and methanol, and ethanol content is very low. This should be attributed to the inhibition of the adsorption of CO molecules on the Rh and Cu active sites. When the spatial distance between the Rh and Cu active sites is increased by physical mixing, the adsorption of CO molecules is significantly enhanced, and the catalytic activity and ethanol selectivity are improved.
  • loading
  • [1]
    GUO S X, LI S S, ZHONG H X, GONG D D, WANG J M, KANG N, ZHANG L H, LIU G L, LIU Y. Mixed oxides confined and tailored cobalt nanocatalyst for direct ethanol synthesis from syngas: A catalyst designing by using perovskite-type oxide as the precursor[J]. Ind Eng Chem Res,2018,57(6):2404−2415. doi: 10.1021/acs.iecr.7b04336
    [2]
    AO M, PHAM G H, SUNARSO J, TADE M O, LIU S M. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catal,2018,8(8):7025−7050. doi: 10.1021/acscatal.8b01391
    [3]
    LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46(5):1358−1426. doi: 10.1039/C6CS00324A
    [4]
    GU T J, WANG B C, CHEN S Y, YANG B. Automated generation and analysis of the complex catalytic reaction network of ethanol synthesis from syngas on Rh(111)[J]. ACS Catal,2020,10(11):6346−6355. doi: 10.1021/acscatal.0c00630
    [5]
    XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal,2013,34(1):116−129. doi: 10.1016/S1872-2067(11)60496-8
    [6]
    ZHU Y, KONG X, LI X, DING G, ZHU Y, LI Y W. Cu Nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation[J]. ACS Catal,2014,4(10):3612−3620. doi: 10.1021/cs5009283
    [7]
    PALOMINO R M, MAGEE J W, LLORCA J, SENANAYAKE S D, WHITE M G. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates[J]. J Catal,2015,329:87−94. doi: 10.1016/j.jcat.2015.04.033
    [8]
    GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catal,2011,1(6):641−656. doi: 10.1021/cs2001048
    [9]
    YIN A Y, GUO X Y, DAI W-L, FAN K N. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+[J]. J Phy Chem C,2009,113(25):11003−11013.
    [10]
    HUANG X, TESCHNER D, DIMITRAKOPOULOU M, FEDOROV A, FRANK B, KRAEHNERT R, ROSOWSKI F, KAISER H, SCHUNK S, KURETSCHKA C, SCHLOGL R, WILLINGER M G, TRUNSCHKE A. Atomic-scale observation of the metal-promoter interaction in Rh-based syngas-upgrading catalysts[J]. Angew Chem Int Ed,2019,58(26):8709−8713. doi: 10.1002/anie.201902750
    [11]
    MATEEN M, SHAH K, CHEN Z, CHEN C, LI Y D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions[J]. Nano Res,2019,12(7):1631−1634. doi: 10.1007/s12274-019-2411-y
    [12]
    KRISHNAMURTHY R, CHUANG S S, GHOSAL K. Carbon monoxide adsorption and hydrogenation on Cu-Rh/SiO2 catalysts[J]. Appl Catal A: Gen,1994,114(1):109−125. doi: 10.1016/0926-860X(94)85111-5
    [13]
    ZHAO Y H, YANG M M, SUN D P, SU H Y, SUN K J, MA X F, BAO X H, LI W-X. Rh-decorated cu alloy catalyst for improved C2 oxygenate formation from syngas[J]. J Phys Chem C,2011,115(37):18247−18256. doi: 10.1021/jp204961g
    [14]
    WEISZ P B. Polyfunctional heterogeneous catalysis[J]. Adv Catal,1962,13:137−190.
    [15]
    KIM J, KIM W, SEO Y, KIM J-C, RYOO R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location[J]. J Catal,2013,301:187−197. doi: 10.1016/j.jcat.2013.02.015
    [16]
    BATALHA N, PINARD L, BOUCHY C, GUILLON E, GUISNET M. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. J Catal,2013,307:122−131. doi: 10.1016/j.jcat.2013.07.014
    [17]
    ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature,2015,528(7581):245−248. doi: 10.1038/nature16173
    [18]
    CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [19]
    CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728.
    [20]
    KANG J C, HE S, ZHOU W, SHEN Z, LI Y Y, CHEN M S, ZHANG Q H, WANG Y. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nat Commun,2020,11(1):1−11. doi: 10.1038/s41467-019-13993-7
    [21]
    HANNAGAN R T, PATEL D A, CRAMER L A, SCHILLING A C, RYAN P T P, LARSON A M, ÇINAR V, WANG Y C, BALEMA T A, SYKES E C H. Combining STM, RAIRS and TPD to decipher the dispersion and interactions between active sites in RhCu single-atom alloys[J]. ChemCatChem,2019,12(2):488−493.
    [22]
    GONZALEZ S, SOUSA C, ILLAS F. Features and catalytic properties of RhCu: A review[J]. Int J Mod Phy B,2010,24(25/26):5128−5138.
    [23]
    LI C, LIU J, GAO W, ZHAO Y, WEI M. Ce-promoted Rh/TiO2 heterogeneous catalysts towards ethanol production from syngas[J]. Catal Lett,2013,143(11):1247−1254. doi: 10.1007/s10562-013-1100-9
    [24]
    WANG B, CUI Y Y, WEN C, CHEN X, DONG Y, DAI W L. Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate[J]. Appl Catal A: Gen,2016,509:66−74. doi: 10.1016/j.apcata.2015.10.022
    [25]
    KACIMI S, BARBIER, J. , TAHA, R. Oxygen storage capacity of promoted Rh/CeC2 catalysts. Exceptional behavior of RhCu/CeO2[J]. Catal Lett,1993,22:343−350. doi: 10.1007/BF00807243
    [26]
    EGBEBI A, SCHWARTZ V, OVERBURY S H, SPIVEY J J. Effect of Li promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation[J]. Cataly Today,2010,149(1-2):91−97. doi: 10.1016/j.cattod.2009.07.104
    [27]
    JIANG B, KANI K, IQBAL M, ABE H, KIMURA T, HOSSAIN M S A, ANJANEYULU O, HENZIE J, YAMAUCHI Y. Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy[J]. Chem Mater,2018,30(2):428−435. doi: 10.1021/acs.chemmater.7b04307
    [28]
    GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc,2012,134(34):13922−13925. doi: 10.1021/ja3034153
    [29]
    YIN A, GUO X, DAI W-L, FAN K. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+[J]. J Phys Chem C,2009,113(25):11003−11013. doi: 10.1021/jp902688b
    [30]
    LIU W C, MELAET G, RALSTON W T, ALAYOGLU S, HOROWITZ Y, YE R, HURLBURT T, MAO B, CRUMLIN E, SALMERON M, SOMORJAI G A. Co-Rh nanoparticles for the hydrogenation of carbon monoxide: Catalytic performance towards alcohol production and ambient pressure X-Ray photoelectron spectroscopy study[J]. Catal Lett,2016,146(8):1574−1580. doi: 10.1007/s10562-016-1782-x
    [31]
    ZHENG X L, LIN H Q, ZHENG J W, DUAN X P, YUAN Y Z. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catal,2013,3(12):2738−2749. doi: 10.1021/cs400574v
    [32]
    HADJIIVANOV K, KNÖZINGER H. FTIR study of CO and NO adsorption and coadsorption on a Cu/SiO2 catalyst: Probing the oxidation state of copper[J]. Phys Chem Chem Phys,2001,3(6):1132−1137. doi: 10.1039/b009649k
    [33]
    YANG A C, GARL C W. Infrared studies of carbon monoxide chemisorbed on rhodium[J]. J Phys Chem,1957,61(11):1504−1512. doi: 10.1021/j150557a013
    [34]
    JIANG D H, DING Y J, PAN Z D, CHEN W M, LUO H Y. CO Hydrogenation to C2-oxygenates over Rh-Mn-Li/SiO2 catalyst: Effects of support pretreatment with nC1–C5 alcohols[J]. Catal Lett,2008,121(3):241−246.
    [35]
    FORCE C, BELZUNEGUI J, SANZ J, MARTıNEZ-ARIAS A, SORIA J. Influence of precursor salt on metal particle formation in Rh/CeO2 catalysts[J]. J Catal,2001,197(1):192−199. doi: 10.1006/jcat.2000.3067
    [36]
    ANDERSON J A, ROCHESTER C H, WANG Z. IR study of CO adsorption on Cu–Rh/SiO2 catalysts, coked by reaction with methane[J]. J Mol Catal A: Chem,1999,139(2/3):285−303. doi: 10.1016/S1381-1169(98)00206-4
    [37]
    QI J, CHRISTOPHER P. Atomically dispersed Rh active sites on oxide supports with controlled acidity for gas-phase halide-free methanol carbonylation to acetic acid[J]. Ind Eng Chem Res,2019,58(28):12632−12641. doi: 10.1021/acs.iecr.9b02289
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (251) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return