Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
CHEN Mao-jun, XU Bin, DONG Han-ting, WU Xiong-xi, ZENG Li. Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019
Citation: CHEN Mao-jun, XU Bin, DONG Han-ting, WU Xiong-xi, ZENG Li. Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 373-378. doi: 10.19906/j.cnki.JFCT.2021019

Preparation of expanded graphite supported Pt nanoparticle catalyst and its electrocatalytic performance in the direct methanol fuel cell

doi: 10.19906/j.cnki.JFCT.2021019
Funds:  The project was supported by the Public Projects of Zhejiang Province (LGG18E060002) and Research Foundation of Education of Zhejiang Province (Y201941416).
  • Received Date: 2020-10-19
  • Rev Recd Date: 2020-11-09
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • Expanded graphite (EG) was prepared by intercalation oxidation of natural flake graphite with perchloric acid and Pt nanoparticles were then loaded on the surface of EG by means of liquid phase reduction method with ethylene glycol. The electrocatalytic performance of EG-supported Pt nanoparticle (Pt/EG) catalyst in the direct methanol fuel cell was investigated with the help of XRD, TEM, SEM and cyclic voltammetry (CV) characterizations. The results show that the Pt nanoparticles with average diameter of 2.56 nm are well dispersed on the surface of EG. The structure of expanded graphite sheets can obviously improve the electrocatalystic activity and tolerance to CO poisoning ability during methanol oxidation. Under the same conditions, the mass specific activity and the current density of current Pt/EG catalyst are 1.24 times and 1.5 times that of the commercial JM Pt/C, respectively.
  • loading
  • [1]
    MUNJEWAR S S, THOMBRE S B, MALLICK R K. A comprehensive review on recent material development of passive direct methanol fuel cell[J]. Ionics,2017,23(1):1−18. doi: 10.1007/s11581-016-1864-1
    [2]
    KAMARUDIN S K, ACHMAD F, DAUD W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. Int J Hydrogen Energy,2009,34(16):6902−6916. doi: 10.1016/j.ijhydene.2009.06.013
    [3]
    LIU H, SONG C, ZHANG L, ZHANG J, WANG H, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources,2006,155(2):95−110. doi: 10.1016/j.jpowsour.2006.01.030
    [4]
    TOLMACHEV Y V, PETRII O A. Pt-Ru electrocatalysts for fuel cells: Developments in the last decade[J]. J Solid State Electrochem,2017,21(3):613−639. doi: 10.1007/s10008-016-3382-5
    [5]
    WEI Y C, LIU C W, CHANG W J, WANG K W. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction[J]. J Alloys Compd,2011,509(2):535−541. doi: 10.1016/j.jallcom.2010.09.096
    [6]
    HAN F, WANG X, LIAN J, WANG Y. The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction[J]. Carbon,2012,50(15):5498−5504. doi: 10.1016/j.carbon.2012.07.039
    [7]
    PECH-RODRÍGUEZ W J, CALLES-ARRIAGA C, GONZÁLEZ-QUIJANO D, VARGAS-GUTIÉRREZ G, MORAIS C, NAPPORN T W, RODRÍGUEZ-VARELA F J. Electrocatalysis of the Ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media[J]. J Power Sources,2018,375:335−344. doi: 10.1016/j.jpowsour.2017.07.081
    [8]
    赵海东, 卢珍, 刘锐, 李作鹏, 郭永. 铂银合金的制备及其对甲醇电氧化反应的催化性能(英文)[J]. 燃料化学学报,2020,48(8):1015−1024. doi: 10.1016/S1872-5813(20)30069-4

    ZHAO Hai-dong, LU Zhen, LIU Rui, LI Zuo-peng, GUO Yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. J Fuel Chem Technol,2020,48(8):1015−1024. doi: 10.1016/S1872-5813(20)30069-4
    [9]
    CHEN M J, LOU B Y, NI Z J, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta,2015,165:105−109.
    [10]
    OU L. The origin of enhanced electrocatalytic activity of Pt-M (M=Fe, Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: A DFT computational study[J]. Comput Theor Chem,2014,1048(0):69−76.
    [11]
    RETHINASABAPATHY M, KANG S M, HALDORAI Y, JANKIRAMAN M, JONNA N, CHOE S R, HUH Y S, NATESAN B. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions[J]. Int J Hydrogen Energy,2017,42(52):30738−30749. doi: 10.1016/j.ijhydene.2017.10.121
    [12]
    TELIZ E, DÍAZ V, PÉREZ I, CORENGIA M, ZINOLA C F. Carbon supported Pt, Ru and Mo catalysts for methanol electrooxidation[J]. Int J Hydrogen Energy,2012,37(19):14761−14768. doi: 10.1016/j.ijhydene.2011.12.084
    [13]
    LEE E, MURTHY A, MANTHIRAM A. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells[J]. Electrochim Acta,2011,56(3):1611−1618. doi: 10.1016/j.electacta.2010.10.086
    [14]
    KIM J, POLIQUIT B Z, NAM H S, KIM S H, LEE Y M, KIM K M, KO J M. Electrochemical activities of Pt-Ru-Co and Pt-Ru-Ni electrocatalysts supported by a carbon fiber web[J]. Curr Appl Phys,2012,12(1):254−258. doi: 10.1016/j.cap.2011.06.014
    [15]
    THAMER B, EL-NEWEHY M, BARAKAT N, AL-DEYAB S, KIM H. Preparation of zero-valent Co/N-CNFs as an immobilized thin film onto graphite disc for methanol electrooxidation[J]. Fiber Polym,2017,18:696−705. doi: 10.1007/s12221-017-1068-y
    [16]
    ZHANG L R, ZHAO J, LI M, NI H T, ZHANG J L, FENG X M, MA Y W, FAN Q L, WANG X Z, HU Z, HUANG W. Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium[J]. New J Chem,2012,36(4):1108−1113. doi: 10.1039/c2nj20690k
    [17]
    SHUIHUA T, GONGQUAN S, JING Q, SHIGUO S, JUNSONG G, QIN X, HAARBERG G M. Review of new carbon materials as catalyst supports in direct alcohol fuel cells[J]. Chin J Catal,2010,31(1):12−17. doi: 10.1016/S1872-2067(09)60034-6
    [18]
    AHMADI R, AMINI M K. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation[J]. Int J Hydrogen Energy,2011,36(12):7275−7283. doi: 10.1016/j.ijhydene.2011.03.013
    [19]
    钟盛文, 胡仙超, 俞园, 余长林, 周阳. 核壳结构碳化钨复合微球催化剂对甲醇电催化性能(英文)[J]. 燃料化学学报,2018,46(5):585−591. doi: 10.3969/j.issn.0253-2409.2018.05.011

    ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. J Fuel Chem Technol,2018,46(5):585−591. doi: 10.3969/j.issn.0253-2409.2018.05.011
    [20]
    CALVILLO L, LÁZARO M, GARCÍA-BORDEJÉ E, MOLINER R, CABOT P, ESPARBÉ I, PASTOR E, QUINTANA J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J Power Sources,2007,169(1):59−64. doi: 10.1016/j.jpowsour.2007.01.042
    [21]
    PARK I S, PARK K W, CHOI J H, PARK C R, SUNG Y E. Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles[J]. Carbon,2007,45(1):28−33. doi: 10.1016/j.carbon.2006.08.011
    [22]
    BHAVANI K S, ANUSHA T, BRAHMAN P K. Fabrication and characterization of gold nanoparticles and fullerene-C60 nanocomposite film at glassy carbon electrode as potential electro-catalyst towards the methanol oxidation[J]. Int J Hydrogen Energy,2019,44(47):25863−25873. doi: 10.1016/j.ijhydene.2019.08.005
    [23]
    ANTOLINI E. Graphene as a new carbon support for low-temperature fuel cell catalysts[J]. Appl Catal B-Environ,2012,123:52−68.
    [24]
    魏英祥, 涂伟霞. 膨胀石墨负载钯纳米颗粒催化六价铬还原反应[J]. 高等学校化学学报,2014,35(11):2397−2402.

    WEI Yingxiang, TUWeixia. Reduction of hexavalent chromium over the expanded graphite supported palladium nanocatalyst[J]. Chem J Chin Univ,2014,35(11):2397−2402.
    [25]
    YUAN J, TANG S, ZHU Z, QIN X, QU R, DENG Y, WU L, LI J, HAARBERG G M. Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors[J]. J Mater Sci-Mater El,2017,28(23):18022−18030. doi: 10.1007/s10854-017-7745-1
    [26]
    LI H, ZHANG Y, WAN Q, LI Y, YANG N. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon,2018,131:111−119. doi: 10.1016/j.carbon.2018.01.093
    [27]
    DHAKATE S, SHARMA S, BORAH M, MATHUR R, DHAMI T. Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell[J]. Int J Hydrogen Energy,2008,33(23):7146−7152. doi: 10.1016/j.ijhydene.2008.09.004
    [28]
    RAMACHANDRAN R, FELIX S, JOSHI G M, RAGHUPATHY B P C, JEONG S K, GRACE A N. Synthesis of graphene platelets by chemical and electrochemical route[J]. Mater Res Bull,2013,48(10):3834−3842. doi: 10.1016/j.materresbull.2013.05.085
    [29]
    HYDE T. Final analysis: Crystallite size analysis of supported platinum catalysts by XRD[J]. Platin Met Rev,2008,52(2):129−130. doi: 10.1595/147106708X299547
    [30]
    OJANI R, RAOOF J B, GOLI M, VALIOLLAHI R. Pt–Co nanostructures electrodeposited on graphene nanosheets for methanol electrooxidation[J]. J Power Sources,2014,264:76−82. doi: 10.1016/j.jpowsour.2014.03.147
    [31]
    VELÁZQUEZ-PALENZUELA A, CENTELLAS F, GARRIDO J A, ARIAS C, RODRÍGUEZ R M, BRILLAS E, CABOT P L. Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt-Ru electrocatalyst for direct methanol fuel cells[J]. J Power Sources,2011,196(7):3503−3512. doi: 10.1016/j.jpowsour.2010.12.044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (290) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return