Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021
Citation: HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021

Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites

doi: 10.19906/j.cnki.JFCT.2021021
Funds:  The project was supported by the Natural Science Foundation of China (51706207), the Natural Science Foundation of Zhejiang Province (LQ19E060009, LY21E060001), the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), the Youth Talent Support Program by National Forestry and Grassland Administration (2019132617), the Fundamental Research Funds for the Provincial Universities of Zhejiang (2020YQ006)
  • Received Date: 2020-10-14
  • Rev Recd Date: 2020-11-20
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • A series of metal (Zn, Ga and Mg) modified H-ZSM-5 bifunctional catalysts were prepared by impregnation method. Three types of milled wood lignin (MWL), isolated from softwood (Chinese Fir, CF), hardwood (Poplar, P) and herbaceous plant (Corn Straw, CS), were served as starting material to produce light aromatics via the catalytic fast pyrolysis (CFP). The effect of metal modifying and lignin source on the component of bio-oil derived from the lignin CFP was investigated. The results indicate that: Among three types of MWL, CF-MWL has the highest carbon content (59.90%) and calorific value (23.05 MJ/kg), whereas CS-MWL has the highest hydrogen content (6.51%) and effective hydrocarbon ratio (0.43); Compared to H-ZSM-5, Ga/H-ZSM-5 and Zn/H-ZSM-5 can promote the production of light aromatics, whereas Mg/H-ZSM-5 inhibits the formation of light aromatics. Zn/H-ZSM-5 as a catalyst in the lignin CFP displays the highest yield of light aromatics, with 3.122 × 109 a.u./mg for CF-MWL, 2.916 × 109 a.u./mg for P-MWL, and 2.865 × 109 a.u./mg for CS-MWL. Among three types of MWLs, the CFP of CF-MWL gives highest selectivity of 65.02% to BTX. The coke is mainly deposited on the outside surface of zeolite catalyst during the pyrolysis, leading to a great decrease in the number of strong acid sites.
  • loading
  • [1]
    马中青, 王浚浩, 黄明, 蔡伟, 徐嘉龙, 杨优优. 木质素种类和催化剂添加量对热解产物的影响[J]. 农业工程学报,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033

    MA Zhong-qing, WANG Jun-hao, HUANG Ming, CAI Wei, XU Jia-long, YANG You-you. Effects of lignin species and catalyst addition on pyrolysis products[J]. Trans CSAE,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033
    [2]
    LI C Z, ZHAO X C, WANG A Q, HUBER G W, ZHANG T. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev,2015,115(21):11559−11624.
    [3]
    WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust,2017,62:33−86.
    [4]
    郑志锋, 郑云武, 黄元波, 卢怡, 王珍, 李文斌, 李水荣, 林鹿. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报,2019,4(2):1−12.

    ZHENG Zhi-feng, ZHENG Yun-wu, HUANG Yuan-bo, LU Yi, WANG Zhen, LI Wen-bin, LI Shui-rong, LIN Lu. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. J Fo Eng,2019,4(2):1−12.
    [5]
    MA Z Q, WANG J H, ZHOU H Z, ZHANG Y, YANG Y Y, LIU X H, YE J W, CHEN D Y, WANG S R. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Process Technol,2018,181:142−156.
    [6]
    ZHOU S, XUE Y, SHARMA A, BAI X L. Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin[J]. ACS Sustainable Chem Eng,2016,4(12):6608−6617.
    [7]
    NARON D R, COLLARD F X, TYHODA L, GÖRGENS J F. Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins[J]. Ind Crop Prod,2019,131:348−356.
    [8]
    SHEN D K, LIU G F, ZHAO J, XUE J T, GUAN S P, XIAO R. Thermo-chemical conversion of lignin to aromatic compounds: Effect of lignin source and reaction temperature[J]. J Anal Appl Pyrolsis,2015,112:56−65.
    [9]
    SHEN DK, ZHAO J, XIAO R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species[J]. Energy Convers Manage,2016,124:61−72.
    [10]
    DU Z Y, MA X C, LI Y, CHEN P, LIU Y H, LIN X Y, LEI H W, RUAN R. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe[J]. Bioresour Technol,2013,139:397−401.
    [11]
    ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel,2014,116:358−369.
    [12]
    HUANG M, MA Z Q, ZHOU B L, YANG Y Y, CHEN D Y. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresour Technol,2020,301:122754.
    [13]
    LOK C M, DOORN J V, ALMANSA G A. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renewable Sustainable Energy Rev,2019,113:109248.
    [14]
    CHENG Y T, JAE J H, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem Int Ed,2012,51(6):1387−1390.
    [15]
    KIM J W, PARK S H, JUNG J, JEON J K, KO C H, JEONG K E, PARK Y K. Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry[J]. Bioresour Technol,2013,136:431−436.
    [16]
    VICHAPHUND S, AHT-ONG D, SRICHAROENCHAIKUL V, ATONG D D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods[J]. Renewable Energy,2015,79:28−37.
    [17]
    ZHANG H Y, ZHENG J, XIAO R. Catalytic pyrolysis of willow wood with Me/ZSM-5 (Me=Mg, K, Fe, Ga, Ni) to produce aromatics and olefins[J]. Bio Resources,2013,8(4):5612−5621.
    [18]
    ZHENG A Q, JIANG L Q, ZHAO Z L, HUANG Z, ZHAO K, WEI G Q, WANG X B, HE F, LI H B. Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose[J]. Energy Fuels,2015,29(12):8027−8034.
    [19]
    MA Z Q, SUN Q F, YE J W, YAO Q F, ZHAO C. Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolsis,2016,117:116−124.
    [20]
    张雨, 王浚浩, 马中青, 周涵芝, 杨优优, 张文标. 温度对竹材烘焙过程中气固液三相产物组成及特性的影响[J]. 农业工程学报,2018,34(18):242−251. doi: 10.11975/j.issn.1002-6819.2018.18.030

    ZHANG Yu, WANG Jun-hao, MA Zhong-qing, ZHOU Han-zhi, YANG You-you, ZHANG Wen-biao. Effects of torrefaction temperature on composition and characteristics of gas-solid-liquid three-phase products in bamboo torrefaction process[J]. Trans CSAE,2018,34(18):242−251. doi: 10.11975/j.issn.1002-6819.2018.18.030
    [21]
    KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.
    [22]
    LEE K, LEE S, JUN Y, CHOI M. Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation[J]. J Catal,2017,347:222−230.
    [23]
    WANG S Q, LI Z H, BAI X Y, YI W M, FU P. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresour Technol,2019,278:66−72.
    [24]
    ZHANG H Y, CHENG Y T, VISPUTE T P, XIAO R, HUBER G W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio[J]. Energy Environ Sci,2011,4(6):2297−2307.
    [25]
    VESES A, PUÉRTOLAS B, LÓPEZ J M, CALLÉN M S, SOLSONA B, GARCÍA T. Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites[J]. ACS Sustainable Chem Eng,2016,4:1653−1660.
    [26]
    DAI G X, ZOU Q, WANG S R, ZHAO Y, ZHU L J, HUANG Q X. Effect of torrefaction on the structure and pyrolysis behavior of lignin[J]. Energy Fuels,2017,32:4160−4166.
    [27]
    SUN X F, WANG H H, ZHANG G C, FOWLER P, RAJARATNAM M. Extraction and characterization of lignins from maize stem and sugarcane bagasse[J]. J Appl Polym Sci,2011,120(6):3587−3595.
    [28]
    YANG H M, NORINAGA K, LI J, ZHU W Y, WANG H J. Effects of HZSM-5 on volatile products obtained from the fast pyrolysis of lignin and model compounds[J]. Fuel Process Technol,2018,181:207−214.
    [29]
    郑云武, 杨晓琴, 沈华杰, 黄元波, 刘灿, 郑志锋. 改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J]. 农业工程学报,2018,34(20):240−249. doi: 10.11975/j.issn.1002-6819.2018.20.031

    ZHENG Yun-wu, YANG Xiao-qin, SHEN Hua-jie, HUANG Yuan-bo, LIU Can, ZHENG Zhi-feng. Preparation of modified hierarchical HZSM-5 catalyst and its application on pyrolysis of biomass to enhance aromatics products[J]. Trans CSAE,2018,34(20):240−249. doi: 10.11975/j.issn.1002-6819.2018.20.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (570) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return