Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
GUO Liang, LIU Di, DU Zhen-yi, FENG Jie, LI Wen-ying. Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 673-683. doi: 10.19906/j.cnki.JFCT.2021045
Citation: GUO Liang, LIU Di, DU Zhen-yi, FENG Jie, LI Wen-ying. Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 673-683. doi: 10.19906/j.cnki.JFCT.2021045

Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation

doi: 10.19906/j.cnki.JFCT.2021045
Funds:  The project was supported by National Key Research and Development Program of China (2016YFB0600305) and National Natural Science Foundation of China (22078220)
  • Received Date: 2020-12-28
  • Rev Recd Date: 2021-01-25
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • The performance of the ZrO2 modified Ni/SBA-15 catalysts was investigated for the hydrodeoxygenation of dibenzofuran as a coal tar model compound in an autoclave at 280 ℃ and a hydrogen pressure of 6.5 MPa. The effects of ZrO2 modification on the structural characteristics and reaction activity of Ni/Zr-SBA-15 catalysts were analyzed. The results showed that the addition of ZrO2 increased the interaction between the active metal Ni and the SBA-15 support, promoted the dispersion of Ni particles, and introduced oxygen vacancies in the catalysts. As a result, the conversion of oxygen-containing intermediates was enhanced, and thereby the yield of the target product bicyclohexane was improved. However, the addition of excessive ZrO2 (30%) could reduce the specific surface area and pore volume of the catalysts and cover Ni surface, which was not conducive to the reaction. The study found that the highest dibenzofuran conversion rate of 9.21 mmol/(min·g) and the highest bicyclohexane formation rate of 3.74 mmol/(min·g) were achieved when the addition amount of ZrO2 were 10% and 20%, respectively. Both values were much higher than those on the unmodified Ni/SBA-15 catalyst.
  • loading
  • [1]
    赵振新, 朱书全, 马名杰. 中国褐煤的综合优化利用[J]. 洁净煤技术,2008,14(1):28−31. doi: 10.3969/j.issn.1006-6772.2008.01.008

    ZHAO Zhen-xin, ZHU Shu-quan, MA Ming-jie. Comprehensive and optimal utilization of lignite in China[J]. Clean Coal Technol,2008,14(1):28−31. doi: 10.3969/j.issn.1006-6772.2008.01.008
    [2]
    HUBER G W, CORMA A. Synergies between bio- and oil refineries for the production of fuels from biomass[J]. Angew Chem Int Ed,2007,38(50):7184−7201.
    [3]
    任洪凯, 邓文安, 李传, 崔文龙. 中/低温煤焦油酚类化合物的组成研究[J]. 煤炭转化,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017

    REN Hong-kai, DENG Wen-an, LI Chuan, CUI Wen-long. Study on the composition of phenolic compounds in middle/low temperature coal tar[J]. Coal Convers,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017
    [4]
    孙鸣, 陈静, 代晓敏, 马晓迅, 赵香龙, 刘科. 陕北中低温煤焦油减压馏分的GC-MS分析[J]. 煤炭转化,2015,38(1):58−63. doi: 10.3969/j.issn.1004-4248.2015.01.012

    SUN Ning, CHEN Jing, DAI Xiao-min, MA Xiao-xun, ZHAO Xiang-long, LIU Ke. Vacuum distillates and GC-MS Analysis of low temperature coal tar from northern Shaanxi[J]. Coal Convers,2015,38(1):58−63. doi: 10.3969/j.issn.1004-4248.2015.01.012
    [5]
    WANG H, MALE J, WANG Y J A C. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal,2013,3(5):1047−1070. doi: 10.1021/cs400069z
    [6]
    NI H, XU C, WANG R, GUO X, LONG Y, MA C, YAN L, LIU X, SHI Q. Composition and transformation of sulfur-, oxygen-, and nitrogen-containing compounds in the hydrotreating process of a low-temperature coal tar[J]. Energy Fuels,2018,32(3):3077−3084. doi: 10.1021/acs.energyfuels.7b03659
    [7]
    彭华伟. 负载Ni金属/有序介孔SiO2-Al2O3催化二苯并呋喃加氢脱氧反应研究[D]. 太原: 太原理工大学, 2018.

    PENG Hua-wei. Hydrodeoxygenation of dibenzofuran over Ni/ordered mesoporous SiO2-Al2O3 catalysts[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [8]
    王铷. Ni-Fe双金属催化剂用于二苯并呋喃加氢脱氧反应研究[D]. 太原: 太原理工大学, 2019.

    WANG Ru. Hydrodeoxygenation of dibenzofuran over bimetallic Ni-Fe catalysts[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [9]
    WANG L, WAN H, JIN S, CHEN X, LI C, LIANG C. Hydrodeoxygenation of dibenzofuran over SiO2, Al2O3/SiO2 and ZrO2/SiO2 supported Pt catalysts[J]. Catal Sci Technol,2015,5(1):465−474. doi: 10.1039/C4CY00859F
    [10]
    WANG Y, FANG Y, HE T, HU H, WU J. Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite[J]. Catal Commun,2011,12(13):1201−1205. doi: 10.1016/j.catcom.2011.04.010
    [11]
    WANG L, LI C, JIN S, LI W, LIANG C. Hydrodeoxygenation of dibenzofuran over SBA-15 supported Pt, Pd, and Ru catalysts[J]. Catal Lett,2014,144(5):809−816. doi: 10.1007/s10562-014-1236-2
    [12]
    DONG P, LU G, CAI C. Effective hydrodeoxygenation of dibenzofuran by a bimetallic catalyst in water[J]. New J Chem,2016,40(2):1605−1609. doi: 10.1039/C5NJ02164B
    [13]
    DE SOUZA P M, RABELO-NETO R C, BORGES L E P, JACOBS G, DAVIS B H, RESASCO D E, NORONHA F B. Hydrodeoxygenation of phenol over Pd catalysts. effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal,2017,7(3):2058−2073. doi: 10.1021/acscatal.6b02022
    [14]
    ZHAO L, ZHAO J, WU T, ZHAO M, YAN W, ZHANG Y, LI H, WANG Y, XIAO T, ZHAO Y. Synergistic effect of oxygen vacancies and Ni species on tuning selectivity of Ni/ZrO2 catalyst for hydrogenation of maleic anhydride into succinic anhydride and gamma-butyrolacetone[J]. Nanomaterials-Basel,2019,9(3):2079−4991.
    [15]
    KRUK M, JARONIEC M, KO C H, RYOO R. Characterization of the porous structure of SBA-15[J]. Chem Mater,2000,12(7):1961−1968. doi: 10.1021/cm000164e
    [16]
    GUTIERREZ O, VALENCIA D, FUENTES G, KLIMOVA T. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: Synthesis, characterization and evaluation in 4, 6-dimethyldibenzothiophene hydrodesulfurization[J]. J Catal,2007,249(2):140−153. doi: 10.1016/j.jcat.2007.04.014
    [17]
    LINDO M, VIZCAíNO A J, CALLES J A, CARRERO A. Ethanol steam reforming on Ni/Al-SBA-15 catalysts: Effect of the aluminium content[J]. Int J Hydrogen Energy,2010,35(11):5895−5901. doi: 10.1016/j.ijhydene.2009.12.120
    [18]
    OCHOA-HERNÁNDEZ C, YANG Y, PIZARRO P, DE LA PEÑA O'SHEA V A, CORONADO J M, SERRANO D P. Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15[J]. Catal Today,2013,210:81−88. doi: 10.1016/j.cattod.2012.12.002
    [19]
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [20]
    LIU C, WANG W, XU Y, LI Z, WANG B, MA X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [21]
    CAMPA M C, FERRARIS G, GAZZOLI D, PETTITI I, PIETROGIACOMI D. Rhodium supported on tetragonal or monoclinic ZrO2 as catalyst for the partial oxidation of methane[J]. Appl Catal B: Environ,2013,142−143(5):423−431.
    [22]
    LI H, REN J, QIN X, QIN Z, LIN J, LI Z. Ni/SBA-15 catalysts for CO methanation: Effects of V, Ce, and Zr promoters[J]. RSC Adv,2015,5(117):96504−96517. doi: 10.1039/C5RA15990C
    [23]
    JIA X, ZHANG X, RUI N, HU X, LIU C-J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl Catal B: Environ,2019,244:159−169. doi: 10.1016/j.apcatb.2018.11.024
    [24]
    NI J, LENG W, MAO J, WANG J, LIN J, JIANG D, LI X. Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols[J]. Appl Catal B: Environ,2019,253:170−178. doi: 10.1016/j.apcatb.2019.04.043
    [25]
    SHUTTHANANDAN V, NANDASIRI M, ZHENG J, ENGELHARD M H, XU W, THEVUTHASAN S, MURUGESAN V. Applications of XPS in the characterization of Battery materials[J]. J Electron Spectrosc,2019,231:2−10. doi: 10.1016/j.elspec.2018.05.005
    [26]
    BETTINELLI M, SPEGHINI A, FALCOMER D, DALDOSSO M, DALLACASA V, ROMANò L. Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals[J]. J Phys-Condens Mat,2006,18(33):2149−2160. doi: 10.1088/0953-8984/18/33/S30
    [27]
    LIU B, LI C, ZHANG G, YAO X, CHUANG S S C, LI Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-Doped CeO2 nanorods[J]. ACS Catal,2018,8(11):10446−10456. doi: 10.1021/acscatal.8b00415
    [28]
    WANG Y, CAI J, WU M, CHEN J, ZHAO W, TIAN Y, DING T, ZHANG J, JIANG Z, LI X. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B: Environ,2018,239:398−407. doi: 10.1016/j.apcatb.2018.08.029
    [29]
    谢子铮. 二苯并呋喃加氢脱氧反应中Pt、Ni基催化剂的理论设计与实验[D]. 太原: 太原理工大学, 2020.

    XIE Zi-zheng. Theoretical design and experiments of dibenzofuran hydrodeoxygenation over Pt and Ni-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [30]
    WANG X B, XIE Z Z, GUO L, DU Z Y, LI W Y J C T. Mechanism of dibenzofuran hydrodeoxygenation on the surface of Pt(111): A DFT study[J]. Catal Today,2021,36(4):220−228. doi: 10.1016/j.cattod.2020.04.044
    [31]
    BITTER J H, SESHAN K, LERCHER J A. On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming[J]. Top Catal,2000,10(3/4):295−305.
    [32]
    ZHU X, XIE Y, LIU C J, ZHANG Y P. Stability of Pt particles on ZrO2 support during partial oxidation of methane: DRIFT studies of adsorbed CO[J]. J Mol Catal A: Chem,2008,282(1/2):67−73. doi: 10.1016/j.molcata.2007.11.020
    [33]
    PENG B, YUAN X, ZHAO C, LERCHER J A. Stabilizing catalytic pathways via redundancy: Selective reduction of microalgae oil to alkanes[J]. J Am Chem Soc,2012,134(22):9400−9405. doi: 10.1021/ja302436q
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (527) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return