Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIU Xiao-li, WANG Yong-zhao, ZHAO Yong-xiang. Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1190-1200. doi: 10.19906/j.cnki.JFCT.2021047
Citation: LIU Xiao-li, WANG Yong-zhao, ZHAO Yong-xiang. Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1190-1200. doi: 10.19906/j.cnki.JFCT.2021047

Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition

doi: 10.19906/j.cnki.JFCT.2021047
Funds:  The project was supported by the National Natural Science Foundation of China (U1710221) and Natural Science Foundation of Shanxi Province (201801D121043)
  • Received Date: 2021-01-22
  • Rev Recd Date: 2021-02-20
  • Available Online: 2021-03-16
  • Publish Date: 2021-08-31
  • Hydroxyapatite (HAP) and a series of Sr-doped HAP supports (Ca9Sr1, Ca8Sr2 and Ca7Sr3) were synthesized by co-precipitation method, and the supported Co3O4 catalysts were prepared by impregnation method. The prepared samples were characterized by XRD, N2-physisorption, Raman, FT-IR, H2-TPR, XPS, O2-TPD and CO2-TPD, and the N2O decomposition performance of the catalysts were studied using a continuous flow microreactor. The experiment results show that the order of catalytic activity is Co/Ca8Sr2 > Co/Ca9Sr1 > Co/HAP > Co/Ca7Sr3. When the Sr/Ca ratios are 1∶9 and 2∶8, the structure of the HAP carrier is better maintained. Sr doping not only promotes the dispersion of Co3O4, but also increases the number of Co2+ and surface oxygen vacancies on the catalysts. Furthermore, an appropriate amount of Sr doping can increase the surface alkali content and basic site density of the catalyst, which is more conducive to N2O activation and O2 desorption.
  • loading
  • [1]
    XU M X, HE F, WANG H X, OUYANG, HAO D, ZHAO L, LU Q. Direct catalytic decomposition of N2O over bismuth modified NiO catalysts[J]. J Hazard Mater,2021,401:123334. doi: 10.1016/j.jhazmat.2020.123334
    [2]
    魏旭辉. 骨源羟基磷灰石负载Co3O4催化N2O直接分解[D]. 太原: 山西大学, 2020.

    WEI Xu-hui. Co3O4 supported on bone-derived hydroxyapatite as catalysts for N2O catalytic decomposition[D]. Taiyuan: University of Shan Xi, 2020.
    [3]
    郑珂. Y2O3助剂对Co3O4结构及其催化N2O分解性能的影响[D]. 太原: 山西大学, 2019.

    ZHENG Ke. Effect of Y2O3 promoter on the structure of Co3O4 and catalytic performance for N2O decomposition[D]. Taiyuan: University of Shan Xi, 2019.
    [4]
    SATOSHI H, TAKESHI I, YOSHIHIRO K, TETSUYA T, KAZUHIKO S. N2O decomposition properties of Ru catalysts supported on various oxide materials and SnO2[J]. Sci Rep-UK,2020,10(1):21605. doi: 10.1038/s41598-020-78744-x
    [5]
    徐晓玲, 徐秀峰, 张国涛, 牛宪军. 钴铝复合氧化物负载金催化剂的制备及催化分解N2O[J]. 燃料化学学报,2009,37(5):595−600. doi: 10.1016/S1872-5813(10)60012-6

    XU Xiao-ling, XU Xiu-feng, ZHANG Guo-tao, NIU Xian-Jun. Preparation of Co-Al mixed oxide supported gold catalysts and their catalytic activity for N2O decomposition[J]. J Fuel Chem Technol,2009,37(5):595−600. doi: 10.1016/S1872-5813(10)60012-6
    [6]
    CAMPA M C, INDOVINA V, PIETROGIACOMI D. The selective catalytic reduction of N2O with CH4 on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese[J]. Appl Catal B: Environ,2012,111-112:90−95. doi: 10.1016/j.apcatb.2011.09.021
    [7]
    KIM M J, KIM Y J, LEE S J, RYU I S, KIM H J, KIM Y J, KO C H, JEON S G. Enhanced catalytic activity of the Rh/γ-Al2O3 pelletcatalyst for N2O decomposition using high Rhdispersion induced by citric acid[J]. Chem Eng Res Des,2019,141:455−463. doi: 10.1016/j.cherd.2018.11.016
    [8]
    HUANG C Y, MA Z, MIAO C X, YUE Y H, HUA W M, GAO Z. Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts[J]. Rsc Adv,2017,7(8):4243−4252. doi: 10.1039/C6RA25388A
    [9]
    LIU S, TANG N F, SHANG Q G, WU C T, XU G L, CONG Y. Superior performance of iridium supported on rutile titania for the catalytic decomposition of N2O propellants[J]. Chin J Catal,2018,39(7):1189−1193. doi: 10.1016/S1872-2067(18)63077-3
    [10]
    ABU-ZIED B M, SOLIMAN S A, ASIRI A M. Role of rubidium promotion on the nitrous oxide decomposition activity of nanocrystalline Co3O4-CeO2 catalyst[J]. Appl Surf Sci,2019,479:148−157. doi: 10.1016/j.apsusc.2019.01.200
    [11]
    WANG Y Z, WEI X H, HU X B, ZHOU W, ZHAO Y X. Effect of formic acid treatment on the structure and catalytic activity of Co3O4 for N2O decomposition[J]. Catal Lett,2019,149(4):1026−1036. doi: 10.1007/s10562-019-02681-2
    [12]
    郑丽, 吴藏藏, 徐秀峰. N2O 在Mg-Co 和Mg-Mn-Co 复合氧化物上的催化分解[J]. 燃料化学学报,2016,44(12):1494−1501. doi: 10.1016/S1872-5813(17)30005-1

    ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol,2016,44(12):1494−1501. doi: 10.1016/S1872-5813(17)30005-1
    [13]
    GHAHRI A, GOLBABAEI F, VAFAJOO L, MIRESKANDARI S M, YASERI M, SHAHTAHERI S J. Removal of greenhouse gas (N2O) by catalytic decomposition on natural clinoptilolite zeolites impregnated with cobalt[J]. Int J Environ Res,2017,11(3):327−337. doi: 10.1007/s41742-017-0030-6
    [14]
    徐冰, 高春光, 王永钊, 赵永祥. Fe/beta 分子筛催化N2O分解[J]. 工业催化,2018,26(1):36−41.

    XU Bing, GAO Chun-guang, WANG Yong-zhao, ZHAO Yong-xiang. Study of Fe/beta zeolite in catalytic N2O decomposition[J]. Ind Catal,2018,26(1):36−41.
    [15]
    PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEVl O S, BLOOM D, MARNELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts: The role of ceria[J]. Appl Catal B: Envrion,2016,187:259−268. doi: 10.1016/j.apcatb.2016.01.049
    [16]
    LIU N, ZHANG R D, LIY P, CHEN B H. Local electric field effect of TMI (Fe, Co, Cu)-BEA on N2O direct dissociation[J]. J Phys Chem C,2014,118(20):10944−10956. doi: 10.1021/jp5023949
    [17]
    FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B: Environ,2015,176−177:298−305. doi: 10.1016/j.apcatb.2015.04.002
    [18]
    郑珂, 王永钊, 胡晓波, 武瑞芳, 刘晓丽, 赵永祥. 还原-氧化预处理对Co3O4催化分解N2O性能的影响[J]. 燃料化学学报,2019,47(4):455−463.

    ZHENG Ke, WANG Yong-zhao, HU Xiao-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. J Fuel Chem Technol,2019,47(4):455−463.
    [19]
    LIU C, WANG W H, XU Y, LI Z H, WANG B W, MA X B. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [20]
    ZHAO T Q, GAO Q, LIAO W P, XU X F. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. J Fuel Chem Technol,2019,47(9):1120−1128. doi: 10.1016/S1872-5813(19)30046-5
    [21]
    ASANO K, OHNISHI C, IWAMOTO S. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B: Environ,2008,78(3):242−249.
    [22]
    TIAN M, WANG A Q, WANG X D, ZHU Y Y, ZHANG T. Effect of large cations (La3+ and Ba2+) on the catalytic performance of Mn-substituted hexaaluminates for N2O decomposition[J]. Appl Catal B: Environ,2009,92(3/4):437−444. doi: 10.1016/j.apcatb.2009.09.002
    [23]
    ZHU Y Y, WANG X D, WANG A Q, WU G T, WANG J H, ZHANG T. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. J Catal,2011,283(2):149−160. doi: 10.1016/j.jcat.2011.08.001
    [24]
    朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展,2018,30(12):1992−2002.

    ZHU Yan-yan, YUE Zong-yang, BIAN Wen, LIU Rui-lin, MA Xiao-xun, WANG Xiao-dong. The structure of hexaaluminate and application in high-temperature reaction[J]. Prog Chem,2018,30(12):1992−2002.
    [25]
    ZHANG Y, WANG X D, ZHU Y Y, ZHANG T. Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition[J]. Appl Catal B: Environ,2013,129:382−393. doi: 10.1016/j.apcatb.2012.10.001
    [26]
    SHEN Q, LI L D, LI J J, TIAN H, HAO Z P. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. J Hazard Mater,2009,163(2/3):1332−1337. doi: 10.1016/j.jhazmat.2008.07.104
    [27]
    HU X B, WANG Y Z, WU R F, ZHAO L L, WEI X H, ZHAO Y X. Effects of zirconia crystal phases on the catalytic decomposition of N2O over Co3O4/ZrO2 catalysts[J]. App Surf Sci,2020,514:145892. doi: 10.1016/j.apsusc.2020.145892
    [28]
    DOBOSZ J, MAECKA M, ZAWADZKI M. Hydrogen generation via ethanol steam reforming over Co/HAP catalysts[J]. J Energy Inst,2018,91(3):411−423. doi: 10.1016/j.joei.2017.02.001
    [29]
    张三兵, 李作鹏, 鲁润华, 王晓来. 羟基磷灰石负载Ni 催化剂中Ni含量对 催化甲烷二氧化碳重整制合成气性能的影响[J]. 燃料化学学报,2014,42(4):461−466.

    ZHANG San-bing, Li Zuo-peng, LU Run-hua, WANG Xiao-lai. Effects of Ni content of Ni/hydroxyapatite catalysts on catalytic properties for carbon dioxide reforming of methane[J]. J Fuel Chem Technol,2014,42(4):461−466.
    [30]
    SHANTHI R V, MAHALAKSHMY R, THIRUNAVUKKARASU K, SIVASANKER S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites[J]. Mol Catal,2018,451:170−177. doi: 10.1016/j.mcat.2017.12.031
    [31]
    OGO S, ONDA A, IWASA Y, HARA K, FUKUOK A, YANAGISAWA K. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. J Catal,2012,296:24−30. doi: 10.1016/j.jcat.2012.08.019
    [32]
    CHRISTOPHER R H, ZHENG S, SANKARANARAYANAPILLAI, ALEXIS T B. The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion-exchanged hydroxyapatite[J]. J Catal,2018,365:174−183. doi: 10.1016/j.jcat.2018.07.005
    [33]
    LI G M, CHEN M Z, OUYANG Y, YAO D, LU L, WANG L, XIA X F, LEI W, CHEN S M, MANDLER D, HAO Q L. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors[J]. Appl Surf Sci,2019,469:941−950. doi: 10.1016/j.apsusc.2018.11.099
    [34]
    AMADINE O, ESSAMLALI Y, AMEDLOUS A, ZAHOUILY M. Iron oxide encapsulated by copper-apatite: an efficient magnetic nanocatalyst for N-arylation of imidazole with boronic acid[J]. Rsc Adv,2019,9:36471. doi: 10.1039/C9RA06991G
    [35]
    WANG Y Z, HU X B, ZHENG K, ZHANG H, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal,2018,123(2):707−721. doi: 10.1007/s11144-017-1293-9
    [36]
    SUN Y H, QU Z P, CHEN D, WANG H, ZHANG F, FU Q. Formaldehyde catalytic oxidation over hydroxyapatite modified with various organic molecules[J]. Chin J Catal,2014,35(12):1927−1936. doi: 10.1016/S1872-2067(14)60129-7
    [37]
    JAWORSKI J W, CHO S, KIM Y Y, JUNG J H, JEON H S, MIN B K, KWON K Y. Hydroxyapatite supported cobalt catalysts for hydrogen generation[J]. J Colloid Interf Sci,2013,394:401−408. doi: 10.1016/j.jcis.2012.11.036
    [38]
    MAHAMMADUNNISA S K, AKANKSHA T, KRUSHNAMURTY K, SUBRAHMANYAM C. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts[J]. J Chem Sci,2016,128(11):1795−1804. doi: 10.1007/s12039-016-1180-3
    [39]
    TSUCHIDA T, KUBO J, YOSHIOKA T, SAKUMA S, TAKEGUCHI T, UEDA W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. J Catal,2008,259(2):183−189. doi: 10.1016/j.jcat.2008.08.005
    [40]
    WEI X H, WANG Y Z, LI X, WU R F, ZHAO Y X. Co3O4 supported on bone-derived hydroxyapatite as potential catalysts for N2O catalytic decomposition[J]. Mol Catal,2020,491:111005. doi: 10.1016/j.mcat.2020.111005
    [41]
    ZHANG C, ZHANG Z P, SUI C, YUAN F L, NIU X Y, ZHU Y J. Catalytic Decomposition of N2O over Co-Ti Oxide Catalysts: Interaction between Co and Ti Oxide[J]. ChemCatChem,2016,8(12):2155−2164. doi: 10.1002/cctc.201600231
    [42]
    WANG Y Z, ZHENG K, HU X B, ZHOU W, WEI X H, ZHAO Y X. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Mol Catal,2019,470:104−111. doi: 10.1016/j.mcat.2019.04.002
    [43]
    WANG X Y, LIU Y, ZHANG T H, LUO Y J, LAN Z X, ZHANG K, ZUO J C, JIANG L L, WANG R H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: in situ DRIFTS study coupled with raman and XAFS spectroscopy[J]. ACS Catal,2017,7(3):1626−1636. doi: 10.1021/acscatal.6b03547
    [44]
    XUE L, ZHANG C B, HE H, TERAOKA Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Appl Catal B: Environ,2007,75:167−174. doi: 10.1016/j.apcatb.2007.04.013
    [45]
    YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B: Environ,2016,185:110−118. doi: 10.1016/j.apcatb.2015.12.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (366) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return