Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZHUANG Qi-qi, CAO Jing-pei, WU Yan, WEI Yu-lei, YANG Zhi-hui, ZHAO Xiao-yan. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084
Citation: ZHUANG Qi-qi, CAO Jing-pei, WU Yan, WEI Yu-lei, YANG Zhi-hui, ZHAO Xiao-yan. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 408-417. doi: 10.19906/j.cnki.JFCT.2021084

Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor

doi: 10.19906/j.cnki.JFCT.2021084
Funds:  The project was supported by the National Natural Science Foundation of China (21978317), the National Natural Science Foundation of Jiangsu Province (BK20200028) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
  • Received Date: 2021-08-10
  • Rev Recd Date: 2021-09-19
  • Available Online: 2022-01-07
  • Publish Date: 2022-04-26
  • In this paper, three-dimensional hierarchical porous carbons (HPCs) were prepared using coal tar pitch as raw material and α-Fe2O3 as template combined with KOH activation. The as-prepared HPC-3 showed large specific surface area (2003 m2/g), which was due to the synergistic effect of the occupation of α-Fe2O3 (certain mesopores and macropores) and KOH activation (abundant micropores). And the assembled electric double layer capacitor by HPC-3 exhibited the largest specific capacitance (295 F/g) and superior cycling stability (specific capacitance retention of 97.8% after 10000 cycles) in 6 mol/L KOH electrolyte. Meanwhile, the high working voltage (3.6 V) and energy density (60.0 (W·h)/kg) were obtained when it was applied to EMIMBF4 electrolyte.
  • loading
  • [1]
    禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报,2019,70(9):3590−3600.

    YU Xing-hai, LUO Qi-liang, PAN Jian, HAN Yu-qi, ZHANG Qi-feng. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. J Chem Ind Eng,2019,70(9):3590−3600.
    [2]
    GUAN T T, LI K X, ZHAO J H, ZHAO R J, ZHANG G L, ZHANG D D, WANG J L. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. J Mater Chem A,2017,5(30):15869−15878. doi: 10.1039/C7TA02966G
    [3]
    WU Y, CAO J P, ZHUANG Q Q, ZHAO X Y, ZHOU Z, WEI Y L, ZHAO M, BAI H C. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochim Acta,2021,371:137825. doi: 10.1016/j.electacta.2021.137825
    [4]
    GUO Y, SHI Z Q, CHEN M M, WANG C Y. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. J Power Sources,2014,252:235−243. doi: 10.1016/j.jpowsour.2013.11.114
    [5]
    KAZAZI M. Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceram Int,2018,44(9):10863−10870. doi: 10.1016/j.ceramint.2018.03.138
    [6]
    JAIDEV, RAMAPRABHU S. Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications[J]. J Mater Chem A,2012,22(36):18775−18783. doi: 10.1039/C2JM33627H
    [7]
    陈中华, 曾明, 李亮, 杨煜培, 莫 钦, 张雅峰, 熊林颖, 胡章润, 彭 娅. 导电聚合物/聚氨酯复合材料的研究进展[J]. 现代化工,2020,40(5):73−81.

    CHEN Zhong-hua, ZENG Ming, LI Liang, YANG Yu-pei, MO Qin, ZHANG Ya-feng, XIONG Lin-ying, HU Zhang-run, PENG Ya. Research progress on conductive polymers /polyurethane composites[J]. Mod Chem Ind,2020,40(5):73−81.
    [8]
    ZHAO W D, ZHU Y, ZHANG L T, XIE Y L, YE X R. Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors[J]. J Alloys Compd,2019,787:1−8. doi: 10.1016/j.jallcom.2019.02.025
    [9]
    WANG D, WANG Z Y, LI Y, DONG K Z, SHAO J H, LIU Y G, QI X W. In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries[J]. Appl Surf Sci,2019,464:422−428. doi: 10.1016/j.apsusc.2018.09.035
    [10]
    HE X J, LI X J, MA H, HAN J F, ZHANG H, YU C, XIAO N, QIU J S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340(1):183−191.
    [11]
    LU P, SUN Y, XIANG H F, LIANG X, YU Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater,2018,8(8):1702434. doi: 10.1002/aenm.201702434
    [12]
    XING B L, ZHANG C T, LIU Q R, ZHANG C X, HUANG G X, GUO H, CAO J L, CAO Y J, YU J L, CHEN Z F. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. J Alloys Compd,2019,795:91−102. doi: 10.1016/j.jallcom.2019.04.300
    [13]
    HE X J, ZHAO N, QIU J S, XIAO N, YU M X, YU C, ZHANG X Y, ZHENG M D. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A,2013,1(33):9440−9448. doi: 10.1039/c3ta10501f
    [14]
    SONG H J, SUN Y L, JIA X H. Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes[J]. Ceram Int,2015,41(10):13224−13231. doi: 10.1016/j.ceramint.2015.07.100
    [15]
    董莉莉, 任素霞, 石杰, 张修强, 张劲斌. KCl模板法制备煤沥青基活性炭及其电化学性能[J]. 炭素技术,2019,38(6):44−48.

    DONG Li-li, REN Su-xia, SHI Jie, ZHANG Xiu-qiang, ZHANG Jin-bin. Preparation and electrochemical performance of activated carbon from coal pitch with KCl as template[J]. Carbon Tech,2019,38(6):44−48.
    [16]
    WU Y, CAO J P, ZHAO X Y, HAO Z Q, ZHUANG Q Q, ZHU J S, WANG X Y, WEI X Y. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J]. Electrochim Acta,2017,252:397−407. doi: 10.1016/j.electacta.2017.08.176
    [17]
    MANGISETTI S R, KAMARAJ M, RAMAPRABHU S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors[J]. Electrochim Acta,2019,305:264−277. doi: 10.1016/j.electacta.2019.03.043
    [18]
    徐晓倩, 程俊霞, 朱亚明, 高丽娟, 赖仕全, 赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报,2020,71(6):2830−2839.

    XU Xiao-qian, CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan, ZHAO Xue-fei. Electrochemical properties of supercapacitor electrode materials made from needle coke[J]. J Chem Ind Eng,2020,71(6):2830−2839.
    [19]
    WANG D H, WANG Y Z, CHEN Y, LIU W, WANG H Q, ZHAO P H, LI Y, ZHANG J F, DONG Y G, HU S L, YANG J L. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochim Acta,2018,283:132−140. doi: 10.1016/j.electacta.2018.06.151
    [20]
    HE X J, ZHANG H B, ZHANG H, LI X J, XIAO N, QIU J S. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A,2014,2(46):19633−19640. doi: 10.1039/C4TA03323J
    [21]
    TSENG R L, TSENG S K, WU F C, HU C C, WANG C C. Effects of micropore development on the physicochemical properties of KOH-activated carbons[J]. J Chin Inst Chem Eng,2008,39(1):37−47. doi: 10.1016/j.jcice.2007.11.005
    [22]
    DING L L, ZOU B, LIU H Q, LI Y N, WANG Z C, SU Y, GUO Y P, WANG X F. A new route for conversion of corncob to porous carbon by hydrolysis and activation[J]. Chem Eng J,2013,225:300−305. doi: 10.1016/j.cej.2013.03.090
    [23]
    吴燕, 曹景沛, 周志, 庄奇琪, 韦宇檑, 赵小燕. 高性能超级电容器用废液基多孔炭球的制备和性能研究[J]. 燃料化学学报,2021,49(4):537−545.

    WU Yan, CAO Jing-pei, ZHOU Zhi, ZHUANG Qi-qi, WEI Yu-lei, ZHAO Xiao-yan. High-performance supercapacitors of porous carbon spheres synthesis from waste liquid[J]. J Fuel Chem Technol,2021,49(4):537−545.
    [24]
    WANG H C, LIU X P, ZHANG B C, YANG J B, ZHANG Z J, YUE R R, WANG Z W. Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode[J]. J Alloys Compd,2019,786:995−1004. doi: 10.1016/j.jallcom.2019.01.303
    [25]
    焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报,2020,72(5):9−25.

    JIAO Shuai, YANG Lei, WU Ting-ting, LI Hong-qiang, LV Hui-hong, HE Xiao-jun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. J Chem Ind Eng,2020,72(5):9−25.
    [26]
    钟存贵, 曹青, 解小玲, 巩士磊, 周春明, 王 颖. 碳酸钙模板法制备沥青基多孔炭材料及电化学性质研究[J]. 功能材料,2015,46(24):24077−24082.

    ZHONG Cun-gui, CAO Qing, XIE Xiao-ling, GONG Shi-lei, ZHOU Chun-ming, WANG Ying. Preparation of pitch-based carbon materials by pyrolytic calcium carbonate template for supercapacitors[J]. J Funct Mater,2015,46(24):24077−24082.
    [27]
    PENG H, MA G F, SUN K J, MU J J, ZHANG Z, LEI Z Q. Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors[J]. J Phys Chem C,2014,118(51):29507−29516. doi: 10.1021/jp508684t
    [28]
    GUAN L, PAN L, PENG T Y, CAO C, ZHAO W N, YANG Z X, HU H, WU M B. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chem Eng,2019,7(9):8405−8412. doi: 10.1021/acssuschemeng.9b00050
    [29]
    HE X J, YU H H, FAN L W, YU M X, ZHENG M D. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Mater Lett,2017,195:31−33. doi: 10.1016/j.matlet.2017.02.062
    [30]
    XIE X Y, HE X J, SHAO X L, DONG S, XIAO N, QIU J S. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochim Acta,2017,246:634−642. doi: 10.1016/j.electacta.2017.06.092
    [31]
    WEI F, ZHANG H F, HE X J, MA H, DONG S A, XIE X Y. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Mater,2019,34(2):132−139. doi: 10.1016/S1872-5805(19)60006-5
    [32]
    贺怡婷, 李肖, 杨桃, 田晓冬, 徐晓彤, 宋燕, 刘占军. 沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能[J]. 新型炭材料,2021,36(1):227−234.

    HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors[J]. New Carbon Mater,2021,36(1):227−234.
    [33]
    KARNAN M, SUBRAMANI K, SRIVIDHYA P K, SATHISH M. Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes[J]. Electrochim Acta,2017,228:586−596. doi: 10.1016/j.electacta.2017.01.095
    [34]
    SUN X Z, ZHANG X, ZHANG H T, ZHANG D C, MA Y W. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J]. J Solid State Electr,2012,16(8):2597−2603. doi: 10.1007/s10008-012-1678-7
    [35]
    OYEDOTUN K O, MASIKHWA T M, LINDBERG S, MATIC A, JOHANSSON P, MANYALA N. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene[J]. Chem Eng J,2019,375:121906. doi: 10.1016/j.cej.2019.121906
    [36]
    WANG D, WANG Y, LIU H, XU W, XU L. Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability[J]. Chem Eng J,2018,342:474−483. doi: 10.1016/j.cej.2018.02.085
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2281) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return