Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
JIN Shi-shan, ZHANG Da-shan, FENG Xu-hao, ZHANG Cai-shun, QING Shao-jun, ZHANG Lei, GAO Zhi-xian. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019
Citation: JIN Shi-shan, ZHANG Da-shan, FENG Xu-hao, ZHANG Cai-shun, QING Shao-jun, ZHANG Lei, GAO Zhi-xian. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. doi: 10.19906/j.cnki.JFCT.2022019

Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst

doi: 10.19906/j.cnki.JFCT.2022019
Funds:  The project was supported by the National Natural Science Foundation of China (21673270) and the Scientific Research Funds project of Education Department of Liaoning Province (L2019012)
  • Received Date: 2021-12-25
  • Accepted Date: 2022-03-15
  • Rev Recd Date: 2022-02-08
  • Available Online: 2022-03-25
  • Publish Date: 2022-08-26
  • The NiO/CeO2 catalytic materials were prepared with ball milling method using CeO2 as carrier and Ni as active component with good CO oxidation performance at low temperature. The catalysts were characterized by XRD, BET, H2-TPR, XRF and XPS. The effects of nickel content on the structure and low temperature oxidation performance of CO were investigated. The results show that the Ni-Ce ratio mainly affects the number of lattice oxygen vacancies and the interaction between the active ingredient and the carrier. Among them, When the Ni/Ce mole ratios is 1∶9, there are more oxygen vacancies on the surface of the catalyst, so it shows excellent catalytic performance. When the reaction temperature is 200 ℃, oxygen excess coefficient is 5 and the total space velocity is 60000 mL/(gcat·h), the CO conversion reaches 99.2%. In addition, compared with the traditional liquid phase catalyst preparation technology, ball milling has the advantages of low pollution, low cost and easy operation, which is beneficial to save energy.
  • loading
  • [1]
    SETH D, NIU M. Hydrogen futures: Toward a sustainable energy system[J]. Int J Hydrogen Energy,2002,27(3):235−264. doi: 10.1016/S0360-3199(01)00131-8
    [2]
    王子良, 李瑞军, 解东来. 一种CO优先氧化装置的实验研究[J]. 化工进展,2012,31(3):523−527.

    WANG Zi-liang, LI Rui-jun, XIE Dong-lai. An experimental study on a CO preferential oxidation reactor[J]. J Energy Chem,2012,31(3):523−527.
    [3]
    PATRICK M, DAMON H. Hydrogen's role in an uncertain energy future[J]. Int J Hydrogen Energy,2009,34(1):31−39. doi: 10.1016/j.ijhydene.2008.10.060
    [4]
    AGUILA G, GRACIS F, AMYA P. CuO and CeO2 catalysts supported on Al2O3, ZrO2 and SiO2 in the oxidation of CO at low temperature[J]. Appl Catal A: Gen,2008,343(1):16−24.
    [5]
    HAN S W, KIM D H, JEONG M G, PARK K J, KIM Y D. CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature[J]. Chem Eng J,2016,283(1):992−998.
    [6]
    LU R, HE L, WANG Y, GAO X Q, LI W C. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chin J Catal,2020,41(2):350−356. doi: 10.1016/S1872-2067(19)63439-X
    [7]
    BANSMANN J, KUCEROVA G, ABDEL-MAGEED A M, EL-MOEMEN A A, BEHM R J. Influence of re-activation and ongoing CO oxidation reaction on the chemical and electronic properties of Au on Au/CeO2 catalyst: A XANES study at the Au Ledge[J]. J Electron Spectr,2017,220(34):86−90.
    [8]
    KAST P, FRIEDRICH M, GIRGSDIES F, KRÖHNERT J, TESCHNER D, LUNKENBEIN T, BEHRENS M, SCHLöGL R. Strong metal support interaction and alloying in Pd/ZnO catalysts for CO oxidation[J]. Catal Today,2015,260(62):21−31.
    [9]
    LEUNG E, SHIMIZU A, BARMAK K, FARRAUTO R. Copper oxide catalyst supported on niobium oxide for CO oxidation at low temperatures[J]. Catal Commun,2017,97(87):42−46.
    [10]
    WANG Y Z, ZHAO Y X, GAO C G, LIU D S. Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation[J]. Catal Lett,2007,116(3/4):136−142. doi: 10.1007/s10562-007-9099-4
    [11]
    LEE J, RYOU Y, KIM J, CHAN X J, KIM T, KIM D H. Influence of the defect concentration of ceria onthe Pt dispersion and the CO oxidation activity of Pt/CeO2[J]. J Phys Chem C,2018,122(9):4972−4983. doi: 10.1021/acs.jpcc.8b00254
    [12]
    LU R, HE L, WANG Y, GAO X Q, LI W C. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chin J Catal,2019,02(12):350−358.
    [13]
    SUN J, ZHANG L, GE C, TANG C, DONG L. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chin J Catal,2014,35(8):1347−1358.
    [14]
    李树娜, 石奇, 李小军, 方振华, 孙平, 周跃花, 张杏梅, 杨晓慧. 金属掺杂Ce-M(M=Fe、Ni和Cu)催化剂的CO低温氧化性能研究[J]. 燃料化学学报,2017,45(6):707−713. doi: 10.3969/j.issn.0253-2409.2017.06.009

    LI Shu-na, SHI Qi, LL Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol,2017,45(6):707−713. doi: 10.3969/j.issn.0253-2409.2017.06.009
    [15]
    DESHETTI J, VENKATASWAMY P, VICTORIA E C, REDDY B M, BHARGAVA S K. Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods[J]. RSC,2016,6(84):80541−80547.
    [16]
    TANGA C J, LI J C, YAO X J, SUN J F, CAO Y, ZHANG L, GAO F, DENG Y, DONG L. Mesoporous NiO-CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect[J]. Appl Catal A: Gen,2015,494(1):77−86.
    [17]
    肖卫明. 过渡金属催化剂的球磨法制备及其催化CO氧化性能研究[D]. 南昌: 南昌大学研究生院, 2018.

    XIAO Wei-ming. Transition metal catalyst prepared by ball milling and their activities for the CO oxidation[D]. Nanchang: Graduate School of Nanchang University, 2018.
    [18]
    ZHENG Y, LI K, WANG H, ZHU X, WEI Y G, ZHEBG M, WANG Y H. Enhanced activity of CeO2-ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure[J]. Energy Fuels,2016,30(1):638−647. doi: 10.1021/acs.energyfuels.5b02151
    [19]
    ASHOK J, ANG M. L, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods[J]. Catal Today,2017,281(2):304−311.
    [20]
    MAHAMMADUNNIS S, REDDY P M K, LINGAIAH N, SUBRAHMANYAM C. NiO/Ce1-xNixOy as an alternative to noble metal catalysts for CO oxidation[J]. Catal Sci Technol,2013,3(3):730−736. doi: 10.1039/C2CY20641B
    [21]
    AHMED S, KRUMPELT M. Hydrogen from hydrocarbon fuels for fuel cells[J]. Int J Hydrogen Energy,2001,26(4):291−301. doi: 10.1016/S0360-3199(00)00097-5
    [22]
    SANGSEFIDI F S, SALAVATI-NIASARI M, SHABANI-NOOSHABADI M. Characterization of hydrogen storage behavior of the as-synthesized p-type NiO/n-type CeO2 nanocomposites by carbohydrates as a capping agent: The influence of morphology[J]. Int J Hydrogen Energy,2018,43(1):14557−14568.
    [23]
    LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources,2011,196(22):9590−9598. doi: 10.1016/j.jpowsour.2011.07.052
    [24]
    LIU L J, YAO Z J, DENG Y, GAO F, LIU B, DONG L. Morphology and crystal‐plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem,2011,3(6):978−989. doi: 10.1002/cctc.201000320
    [25]
    闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响[J]. 燃料化学学报,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010

    YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni /CeO2 in CO methanation[J]. J Fuel Chem Technol,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010
    [26]
    LIN H K, CHIU H C, HSIN C T, CHIEN S H, WANG C B. Synthesis characterization and catalytic oxidation of carbon monoxide over cobalt oxide[J]. Catal Lett,2003,88(1):169−174.
    [27]
    LUSTEMBERG P G, FERIA L, GANDUGLIA-PIROVANO M V. Single Ni sites supported on CeO2(111) reveal cooperative effects in the water-gas shift reaction[J]. J Phys Chem,2018,3(1):2−28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (513) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return