Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIU Chao, XIE Xiao-qi, FAN Peng-kai, LI Yan. Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021
Citation: LIU Chao, XIE Xiao-qi, FAN Peng-kai, LI Yan. Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021

Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity

doi: 10.19906/j.cnki.JFCT.2022021
Funds:  The project was supported by Natural Science Foundation of Hebei Province (B2016403011, B2020208009) and Natural Science Research Major Project in University of Hebei Province (ZD2017012).
More Information
  • Corresponding author: Tel: 13931157532,E-mail: yikeschao@126.com
  • Received Date: 2022-02-14
  • Accepted Date: 2022-03-25
  • Rev Recd Date: 2022-03-22
  • Available Online: 2022-04-06
  • Publish Date: 2022-08-26
  • Mo2C was synthesized by a high temperature solid state method using ammonium molybdate ((NH4)6Mo7O24·4H2O) and dicyanodiamine (C2H4N4) as rawmaterials, then Mo2C/ZnIn2S4 composite was prepared by in-situ growth method. The composition, structure and properties of the materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis diffuse reflection (UV-vis) and Kelvin probe (KP). The results show that ZnIn2S4 grows in-situ on the surface of Mo2C particles and forms Mo2C/ZnIn2S4 heterojunctions. The hydrogen evolution rate of Mo2C/ZnIn2S4 composite reaches 1.33 mmol/g/h, which is 5.1 times to that of bare ZnIn2S4. The photocatalytic mechanism analysis shows that Mo2C, as a cocatalyst, has metallic properties, high conductivity and high surface work function. After Mo2C/ZnIn2S4 heterogeneous interface formed between Mo2C and ZnIn2S4, the Mo2C/ZnIn2S4 composite can effectively promote the separation and migration rate of photogenerated charges in ZnIn2S4. Meanwhile, Mo2C becomes the active site of hydrogen evolution reaction due to its low hydrogen evolution overpotential, which effectively reduces the overpotential of ZnIn2S4 in hydrogen evolution reaction, and subsequently improves the photocatalytic hydrogen evolution activity of the composite material.
  • loading
  • [1]
    李乃旭, 黄美优, 周建成, 刘茂昌, 敬登伟. MgO和Au纳米颗粒共修饰g-C3N4光催化剂增强CO2-H2O光催化反应过程[J]. 催化学报,2021,42(5):781−794. doi: 10.1016/S1872-2067(20)63690-7

    (LI Nai-xu, HUANG Mei-you, ZHOU Jian-cheng, LIU Mao-chang, JING Deng-wei. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O[J]. Chin J Catal,2021,42(5):781−794. doi: 10.1016/S1872-2067(20)63690-7
    [2]
    ZHANG L, RAN J, QIAO S Z, JARONIEC M. Characterization of semiconductor photocatalysts[J]. Chem Soc Rev,2019,48(20):5184−5206. doi: 10.1039/C9CS00172G
    [3]
    WOLFF C M, FRISCHMANN P D, MARCUS S, BOHN B J, ROBIN W, PANAJOTIS L, CARLSON M T, FRANK J, JOCHEN F, FRANK W. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods[J]. Nat Energy,2018,3:862−869. doi: 10.1038/s41560-018-0229-6
    [4]
    LANDMAN A, DOTAN H, SHTER G E, WULLENKORD M, HOUAIJIA A, MALJUSCH A, GRADER G S, ROTHSCHILLD A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nat Mater,2017,16:646−651. doi: 10.1038/nmat4876
    [5]
    YU J, RANG J. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy Environ Sci,2011,4(4):1364−1371. doi: 10.1039/c0ee00729c
    [6]
    SONG Y, ZHANG J, DONG X, LI H. A review and recent developments in full spectrum photocatalysis using ZnIn2S4-based photocatalysts[J]. Energy Technol-Ger,2021,9(5):2100033. doi: 10.1002/ente.202100033
    [7]
    CHEN X, SHEN S, GUO L, MAO S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503−6570. doi: 10.1021/cr1001645
    [8]
    YIN X-L, LI L-L, JIANG W-J, ZHANG Y, ZHANG X, WAN L-J, HU J-S. MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation[J]. ACS Appl Mater Inter,2016,8(24):15258−15266. doi: 10.1021/acsami.6b02687
    [9]
    ZHANG K, GUO L. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal Sci Technol,2013,3(7):1672−1690. doi: 10.1039/c3cy00018d
    [10]
    WANG J, SUN S, ZHOU R, LI Y, HE Z, DING H, CHEN D, AO W. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4[J]. J Mater Sci Technol,2021,78:1−19. doi: 10.1016/j.jmst.2020.09.045
    [11]
    GAO Y, QIAN K, XU B T, DING F, DRAGUTAN V, DRAGUTAN I, SUN Y G, XU Z H. Designing 2D-2D g-C3N4/Ag: ZnIn2S4 nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution[J]. RSC Adv,2020,10(54):32652−32661. doi: 10.1039/D0RA06226J
    [12]
    WANG M, HUANG S, PANG X, SONG M, DU C, SU Y. Switching charge kinetics from type-I to Z-scheme for g-C3N4 and ZnIn2S4 by defective engineering for efficient and durable hydrogen evolution[J]. Sustainable Energy Fuels,2019,3(12):3422−3429. doi: 10.1039/C9SE00639G
    [13]
    FENG T, ZHAO K, LI H, WANG W, DONG B, CAO L. Constructing a 2D/2D heterojunction of MoSe2/ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. CrystEngComm,2021,23(13):2547−2555. doi: 10.1039/D0CE01808B
    [14]
    SCHLATTER J C, OYAMA S T, METCALFE J E, LAMBERT J M. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline[J]. Indust Eng Chem Res,1988,27:1648−1653. doi: 10.1021/ie00081a014
    [15]
    ZHOU Y, WANG W, ZHANG C, HUANG D, HE D. Sustainable hydrogen production by molybdenum carbide-based efficient photocatalysts: From properties to mechanism[J]. Adv Colloid Interface Sci,2020,279:102144. doi: 10.1016/j.cis.2020.102144
    [16]
    WANG Y, HONG W, JIAN C, HE X, CAI Q, LIU W. The intrinsic hydrogen evolution performance of 2D molybdenum carbide[J]. J Mater Chem A,2020,8(45):24204−24211. doi: 10.1039/D0TA09451J
    [17]
    DU C, YAN B, YANG G. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation[J]. Nano Energy,2020,76:105031. doi: 10.1016/j.nanoen.2020.105031
    [18]
    WANG B, DING Y, DENG Z, LI Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light[J]. Chin J Catal,2019,40(3):335−342. doi: 10.1016/S1872-2067(18)63159-6
    [19]
    魏清莲, 穆帅, 严亚, 吕瑛, 康诗钊, 穆劲. ZnIn2S4的制备及其表面活性剂辅助的形貌控制生长[J]. 无机化学学报,2010,26(2):269−273.

    WEI Qing-lian, MU Shuai, YAN Ya, LV Ying, KANG Shi-zhao, MU Jin. Preparation and surfactant-assisted morphology-controllable growth of ZnIn2S4[J]. Chin J Inorg Chem,2010,26(2):269−273.
    [20]
    WANG S B, GUAN B Y, WANG X, WEN X, LOU D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J Am Chem Soc,2018,140(45):15145−15148. doi: 10.1021/jacs.8b07721
    [21]
    CHEN W, YAN R-Q, ZHU J-Q, HUANG G-B, CHEN Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator[J]. Appl Surf Sci,2020,504:144406. doi: 10.1016/j.apsusc.2019.144406
    [22]
    GAO F, HUANG X, ZHANG L, ZHAO Y, FENG W, LIU P. Crafty design of chemical bonding to construct MoO2/CdS nanorod photocatalysts for boosting hydrogen evolution[J]. Inter J Hydrogen Energy,2019,44(44):24228−24236. doi: 10.1016/j.ijhydene.2019.07.165
    [23]
    LIU Y, WANG L, LV H, WU X, XING X, SONG S. Constructing robust MoO2 /Au/Mn0.5Cd0.5S multiple heterojunctions for improved photocatalytic hydrogen evolution: An insight into the synergetic effect of MoO2 and Au cocatalysts[J]. Appl Surf Sci,2021,541:148582. doi: 10.1016/j.apsusc.2020.148582
    [24]
    WEI L, CHEN Y, LIN Y, WU H, YUAN R, LI Z. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations[J]. Appl Catal B: Environ,2014,144:521−527. doi: 10.1016/j.apcatb.2013.07.064
    [25]
    FENG W, LEI Y, WU X, YUAN J, CHEN J, XU D, ZHANG X, ZHANG S, LIU P, ZHANG L, WENG B. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H2 evolution[J]. J Mater Chem A,2021,9:1759−1769. doi: 10.1039/D0TA09217G
    [26]
    WU S, CHEN M, WANG W, ZHOU J, TANG X, ZHOU D, LIU C. Molybdenum carbide nanoparticles assembling in diverse heteroatoms doped carbon matrix as efficient hydrogen evolution electrocatalysts in acidic and alkaline medium[J]. Carbon,2021,171:385−394. doi: 10.1016/j.carbon.2020.09.037
    [27]
    CAO W, JIANG C, CHEN C, ZHOU H, WANG Y. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance[J]. J Alloy Compd,2021,861:158554. doi: 10.1016/j.jallcom.2020.158554
    [28]
    YAN W, XU Y, HAO S, HE Z, WANG L, WEI Q, XU J, TANG H. Promoting charge separation in hollow-structured C/MoS2@ZnIn2S4/Co3O4 photocatalysts via double heterojunctions for enhanced photocatalytic hydrogen evolution[J]. Inorg Chem,2022,61(11):4725−4734. doi: 10.1021/acs.inorgchem.2c00045
    [29]
    SHARMA L, KHUSHWAHA H S, MATHUR A, HALDER A. Role of molybdenum in Ni-MoO2 catalysts supported on reduced graphene oxide for temperature dependent hydrogen evolution reaction[J]. J Solid State Chem,2018,265:208−217. doi: 10.1016/j.jssc.2018.06.005
    [30]
    BI L, XU D, ZHANG L, LIN Y, WANG D, XIE T. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending[J]. Phys Chem Chem Phys,2015,17(44):29899−29905. doi: 10.1039/C5CP05158D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (576) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return