Volume 50 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
XING Xiang-ying, WANG Hui-xiang, WANG Lian-cheng, LÜ Bao-liang. Regulation of Co2+ cations on the content of Brönsted acid site and oxygen vacancy of WOx to improve the epoxidation performance of 1-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1480-1490. doi: 10.19906/j.cnki.JFCT.2022030
Citation: XING Xiang-ying, WANG Hui-xiang, WANG Lian-cheng, LÜ Bao-liang. Regulation of Co2+ cations on the content of Brönsted acid site and oxygen vacancy of WOx to improve the epoxidation performance of 1-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1480-1490. doi: 10.19906/j.cnki.JFCT.2022030

Regulation of Co2+ cations on the content of Brönsted acid site and oxygen vacancy of WOx to improve the epoxidation performance of 1-hexene

doi: 10.19906/j.cnki.JFCT.2022030
Funds:  The project was supported by the National Natural Science Foundation of China (21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (2021017), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K10) and Natural Science Foundation of Shanxi Province (201901D211583) and Patent Conversion Foundation of Shanxi Province (202202093).
  • Received Date: 2022-03-10
  • Accepted Date: 2022-04-08
  • Rev Recd Date: 2022-04-06
  • Available Online: 2022-05-12
  • Publish Date: 2022-11-30
  • In this study, the Co-WOx catalyst was successfully prepared by directly introducing Co2+ dopant in a dynamic solvothermal synthesis process, and the obtained Co-WOx was used for the catalytic epoxidation of 1-hexene. The structures of WOx before and after the doping were analyzed by XRD, SEM, TEM, Raman, XPS as well as in-situ NH3-FTIR. The results show that the doping of Co2+ has not obvious effect on the crystal phase and main growth direction of WOx, but can effectively reduce the content of Brönsted acid (B acid) site on the surface of WOx catalyst and increase the content of oxygen vacancy at the same time. In the epoxidation reaction, the obtained Co-WOx catalyst (Co/W = 0.1) can increase the selectivity of 1,2-epoxyhexane from 26.9% of pure WOx to 55.7% with a 5.3% decrease in 1-hexene conversion. The improvement of Co-WOx performance is mainly attributed to two aspects: (1) the reduction of B acid site on the surface of WOx inhibits the ring opening hydrolysis of 1,2-epoxyhexane; (2) The increase of oxygen vacancies on the surface of WOx promotes the activation of H2O2, ensuring that the conversion rate of 1-hexene does not decrease significantly, and an increase in the utilization of oxidant H2O2 by 13.5%. Combined with the characterization results and reaction data, the epoxidation mechanism of 1-hexene with W−O−OH as active intermediate is proposed.
  • loading
  • [1]
    BREGANTE D T, FLAHERTY D W. Periodic trends in olefin epoxidation over group IV and V framework-substituted zeolite catalysts: A kinetic and spectroscopic study[J]. J Am Chem Soc,2017,139(20):6888−6898. doi: 10.1021/jacs.7b01422
    [2]
    BREGANTE D T, PRIYADARSHINI P, FLAHERTY D W. Kinetic and spectroscopic evidence for reaction pathways and intermediates for olefin epoxidation on Nb in *BEA[J]. J Catal,2017,348:75−89. doi: 10.1016/j.jcat.2017.02.008
    [3]
    JIN K, MAALOUF J H, LAZOUSKI N, CORBIN N, YANG D T, MANTHIRAM K. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts[J]. J Am Chem Soc,2019,141(15):6413−6418. doi: 10.1021/jacs.9b02345
    [4]
    DISSANAYAKE S, VORA N, ACHOLA L, DANG Y L, HE J K, TOBIN Z, LU X X, MIRICH A, GAO P X, SUIB S L. Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation[J]. Appl Catal B: Environ,2021,282:119573−119584. doi: 10.1016/j.apcatb.2020.119573
    [5]
    DEMENT’EV K I, SAGARADZE A D, KUZNETSOV P S, PALANKOEC T A. Selective production of light olefins from fischer–tropsch synthetic oil by catalytic cracking[J]. Ind Eng Chem Res,2020,59(36):15875−15883. doi: 10.1021/acs.iecr.0c02753
    [6]
    SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−81. doi: 10.1039/b805427d
    [7]
    GALVIS H T, JONG K D. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal,2013,3(9):2130−2149. doi: 10.1021/cs4003436
    [8]
    ZHAI P, XU C, GAO R, LIU X, LI M Z, LI W Z, FU X P, JIA C J, XIE J L, ZHAO M, WANG X P, LI Y W, ZHANG Q W, WEN X D, MA D. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew Chem Int Ed,2016,128:10056−10061. doi: 10.1002/ange.201603556
    [9]
    李德宝, 肖勇, 谭光军, 张国权, 廖廷君, 李勇, 贾丽涛, 陈从标. 一种合成长链α-烯烃的催化剂及其制备方法和应用: 中国, 2020104860290[P]. 2020-08-14.

    LI De-bao, XIAO Yong, TAN Guang-jun, ZhANG Guo-quan, LIAO Yan-jun, LI Yong, JIA Li-tao, CHEN Cong-biao. A catalyst for synthesizing long-chain alpha-olefins A catalyst for synthesizing long-chain alpha-olefins, its preparation method and application agent, and its preparation method and application: CN, 2020104860290[P]. 2020-08-14
    [10]
    林栋, 冯翔, 刘熠斌, DE Chen, 杨朝合. 钛硅分子筛催化剂高效钛位点的理性构筑与调控及催化烯烃环氧化的性能[J]. 中国科学: 化学, https://kns.cnki.net/kcms/detail/11.5838.O6.20220124.1411.002.html.

    LIN Dong, FENG Xiang, LIU Yi-bin, DE Chen, YANG Chao-he. Rational construction and regulation of efficient titanium sites on titanium-silicon molecular sieve catalysts and their catalytic performance for olefin epoxidation[J]. Sci China Chem, https://kns.cnki.net/kcms/detail/11.5838.O6.20220124.1411.002.html.
    [11]
    常慧. 烯烃环氧化技术及其催化剂发展概述[J]. 石油化工技术与经济,2015,31(6):45−49. doi: 10.3969/j.issn.1674-1099.2015.06.012

    CHANG Hui. Overview of olefin epoxidation technology and its catalyst development[J]. Technol Econ Petrochem,2015,31(6):45−49. doi: 10.3969/j.issn.1674-1099.2015.06.012
    [12]
    张术栋, 徐成华, 冯良荣, 邱发礼. 烯烃环氧化及其催化剂的研究进展[J]. 合成化学,2003,11(4):294−299.

    ZHANG Shu-dong, XU Cheng-hua, FENG Liang-rong, QIU Fa-li. Progress of alkene epoxidation and its catalysts[J]. Chin J Syn Chem,2003,11(4):294−299.
    [13]
    LIANG J, ZHANG Q, WU H, MENG G, TANG Q, WANG Y. Iron-based heterogeneous catalysts for epoxidation of alkenes using molecular oxygen[J]. Catal Commun,2004,5(11):665−669. doi: 10.1016/j.catcom.2004.08.010
    [14]
    AYLA E Z, POTTS D S, BREGANTE D T, FLAHERTY D W. Alkene epoxidations with H2O2 over groups 4–6 metal-substituted bea zeolites: reactive intermediates, reaction pathways, and linear free-energy relationships[J]. ACS Catal,2020,11(1):139−154.
    [15]
    SONG J, HUANG Z F, PAN L, ZOU J J, ZHANG X W, WANG L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst[J]. ACS Catal,2015,5(11):6594−6599. doi: 10.1021/acscatal.5b01522
    [16]
    WU P, TATSUMI T, KOMATSU T, YASHIMA T. A novel titanosilicate with MWW structure: II. catalytic properties in the selective oxidation of alkenes[J]. J Catal,2001,202(2):245−255. doi: 10.1006/jcat.2001.3278
    [17]
    AHMADI M, MISTRY H, ROLDAN CUENYA B. Tailoring the catalytic properties of metal nanoparticles via support interactions[J]. J Phys Chem Lett,2016,7(17):3519−3533. doi: 10.1021/acs.jpclett.6b01198
    [18]
    LOULOUDI M, KOLOKYTHA C, HADJILIADIS N. Alkene epoxidation catalysed by binuclear manganese complexes[J]. J Mol Catal A,2002,180(1/2):19−24.
    [19]
    ZHENG H, OU J Z, STRANO M S, KANER R B, MITCHELL A, KALANTAR-ZADEH K. Nanostructured tungsten oxide-properties, synthesis, and applications[J]. Adv Funct Mater,2011,21(12):2175−2196. doi: 10.1002/adfm.201002477
    [20]
    LIU H, HUANG S, ZHANG L, LIU S L, XIN W J, XU L Y. The preparation of active WO3 catalysts for metathesis between ethene and 2-butene under moist atmosphere[J]. Catal Commun,2009,10(5):544−548. doi: 10.1016/j.catcom.2008.10.030
    [21]
    MA J, ZHANG J, WANG S R, WANG T H, LIAN J B, DUAN X C, ZHENG W J. Topochemical preparation of WO3 nanoplates through precursor H2WO4 and their gas-sensing performances[J]. J Phys Chem C,2011,115(37):18157−18163. doi: 10.1021/jp205782a
    [22]
    AN X, YU J C, WANG Y, HU Y M, YU X L, ZHANG G J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. J Mater Chem,2012,22(17):8525−8531. doi: 10.1039/c2jm16709c
    [23]
    GHOSH S, ACHARYYA S S, KUMAR M, BAL R. One-pot preparation of nanocrystalline Ag-WO3 catalyst for the selective oxidation of styrene[J]. RSC Adv,2015,5(47):37610−37616. doi: 10.1039/C5RA03803K
    [24]
    ZHANG M, SINGH V, HU X, MA X Y, LU J K, ZHANG C, WANG J P, NIU J Y. Efficient olefins epoxidation on ultrafine H2O-WOx nanoparticles with spectroscopic evidence of intermediate species[J]. ACS Catal,2019,9(9):7641−7650. doi: 10.1021/acscatal.9b01226
    [25]
    MAHESEWRI R, PACHAMUTHU M P, RAMANATHAN A, SUBRAMANIAM B. Synthesis, characterization, and epoxidation activity of tungsten-incorporated SBA-16 (W-SBA-16)[J]. Ind Eng Chem Res,2014,53(49):18833−18839. doi: 10.1021/ie501784c
    [26]
    GAO R H, YANG X L, DAI W L, LE Y L, LI H X, FAN K N. High-activity, single-site mesoporous WO3-MCF materials for the catalytic epoxidation of cycloocta-1, 5-diene with aqueous hydrogen peroxide[J]. J Catal,2008,256(2):259−267. doi: 10.1016/j.jcat.2008.03.017
    [27]
    SHIMA H, TATSUMI T, KONDO J N. Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1[J]. Microporous Mesoporous Mater,2010,135(1/3):13−20. doi: 10.1016/j.micromeso.2010.06.005
    [28]
    BORAH P, MA X, NGUYEN K T, ZHAO Y L. A vanadyl complex grafted to periodic mesoporous organosilica: A green catalyst for selective hydroxylation of benzene to phenol[J]. Angew Chem Int Ed,2012,51(31):7756−7761. doi: 10.1002/anie.201203275
    [29]
    BU J, YUN S H, RHEE H K. Epoxidation of n-hexene and cyclohexene over titanium-containing catalysts[J]. Korean J Chem Eng,2000,17(1):76−80. doi: 10.1007/BF02789257
    [30]
    HAMEED A, GONDAL M A, YAMANI Z H. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals[J]. Catal Commun,2004,5(11):715−719. doi: 10.1016/j.catcom.2004.09.002
    [31]
    SONG H, LI Y G, LOU Z R, XIAO M, HU L, YE Z Z, ZHU L P. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities[J]. Appl Catal B: Environ,2015,166−167:112−120. doi: 10.1016/j.apcatb.2014.11.020
    [32]
    FENG C, WANG S, GENG B. Ti(Ⅳ) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance[J]. Nanoscale Adv,2011,3(9):3695−3699. doi: 10.1039/c1nr10460h
    [33]
    MUKHERJEE R, PRAJAPATI C S, SAHAY P P. Tin-incorporation induced changes in the microstructural, optical, and electrical behavior of tungsten oxide nanocrystalline thin films grown via spray pyrolysis[J]. J Therm Spray Technol,2014,23(8):1445−1455. doi: 10.1007/s11666-014-0134-x
    [34]
    CAO Y, WANG H X, DING R M, WANG L C, LIU Z, LV B L. Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst[J]. Appl Catal A: Gen,2020,589:117308−117317. doi: 10.1016/j.apcata.2019.117308
    [35]
    MEHMOOD F, IQBAL J, JAN T, GUL A, MANSOOR Q, FARYAL R. Structural, photoluminescence, electrical, anti cancer and visible light driven photocatalytic characteristics of Co doped WO3 nanoplates[J]. Vib Spectrosc,2017,93:78−89. doi: 10.1016/j.vibspec.2017.09.005
    [36]
    ABBAS F, IQBAL J, JAN T, GUL A, ABBASI R, MAHMOOD A, AHMAD I, ISMAIL M. Differential cytotoxicity of ferromagnetic Co doped CeO2 nanoparticles against human neuroblastoma cancer cells[J]. J Alloys Compd,2015,648:1060−1066. doi: 10.1016/j.jallcom.2015.06.195
    [37]
    YU Y K, TANG Z M, WANG J, WANG R, ChEN Z, LIU H X, ShEN K X, HUANG X, LIU Y M, HE M Y. Insights into the efficiency of hydrogen peroxide utilization over titanosilicate/H2O2 systems[J]. J Catal,2020,381:96−107. doi: 10.1016/j.jcat.2019.09.045
    [38]
    ZHANG H, HUANG C L, TAO R, ZHAO Y F, ChEN S, SUN Z Y, LIU Z M. One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance[J]. J Mater Chem,2012,22(8):3354−3359. doi: 10.1039/c1jm15726d
    [39]
    HE X J, YING Y, ZHAO X, DENG W F, TAN Y M, XIE Q J. Cobalt-doped tungsten trioxide nanorods decorated with Au nanoparticles for ultrasensitive photoelectrochemical detection of aflatoxin B1 based on aptamer structure switch[J]. Sens Actuators B,2021,332:1−8.
    [40]
    辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009.

    XIN Qin, LUO Meng-fei. Modern Catalytic Research Methods[M]. Beijing: Science Press, 2009.
    [41]
    GONZALEZ J, WANG J A, CHEN L F, MANRIQUEZ, M E, DOMINGUEZ J M. Structural defects, lewis acidity, and catalysis properties of mesostructured WO3/SBA-15 nanocatalysts[J]. J Phys Chem C,2017,121(43):23988−23999. doi: 10.1021/acs.jpcc.7b06373
    [42]
    LEI Q F, WANG C, DAI W L, WU G J, GUAN N J, HUNGER M, LI L D. Tandem Lewis acid catalysis for the conversion of alkenes to 1, 2-diols in the confined space of bifunctional TiSn-Beta zeolite[J]. Chin J Catal,2021,42(7):1176−1184. doi: 10.1016/S1872-2067(20)63734-2
    [43]
    ZHANG G Q, WANG D, FENG P, SH I S, WANG C X, ZHENG A D, LI G L, TIAN Z J. Synthesis of zeolite Beta containing ultra-small CoO particles for ethylbenzene oxidation[J]. Chin J Catal,2017,38(7):1207−1215. doi: 10.1016/S1872-2067(17)62853-5
    [44]
    张晓晶, 贾永芹. 分子筛负载CoOx催化剂用于苯的催化氧化[J]. 环境科学与技术,2018,41(9):28−32.

    ZHANG Xiao-jing, JIA Yong-qin. Catalytic oxidation of benzene over zeolites supported CoOx catalysts[J]. Environ Sci Technol,2018,41(9):28−32.
    [45]
    QIU L, CHENG Y, YANG C, ZENG G M, LONG Z Y, WEI S N, ZHAO K, LUO L. Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone[J]. RSC Adv,2016,6(21):17036−17045. doi: 10.1039/C5RA23077B
    [46]
    RAMANATHAN A, ZHU H, MAHESWARI R, THAPA P S, SUBRAMANIAM B. Comparative study of Nb-Incorporated cubic mesoporous silicates as epoxidation catalysts[J]. Ind Eng Chem Res,2015,54(16):4236−4242. doi: 10.1021/ie504386g
    [47]
    YAN W J, ZHANG G Y, YAN H, LIU Y B, CHEN X B, FENG X, JIN X, YANG C H. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts[J]. ACS Sustainable Chem Eng,2018,6(4):4423−4452. doi: 10.1021/acssuschemeng.7b03101
    [48]
    FRANCESCA BONINO A D, GABRIELE R, MARCO R, GUIDO S, RINO D, ADRIANO Z, CARLO L, CARMELO P, SILVIA B. Ti-Peroxo species in the TS-1/H2O2/H2O system[J]. J Phys Chem B,2004,108:3573−3583. doi: 10.1021/jp036166e
    [49]
    SILVIA B, ALESSANDRO D, FRANCESCA B, GABRIELE R, CARLO L, ADRIANO Z. The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy[J]. Angew Chem Int Ed,2002,41(24):4734−4737. doi: 10.1002/anie.200290032
    [50]
    YOON C W, HIRSEKORN K F, NEIDIG M L, YANG X Z, Tilley T D. Mechanism of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA15 and TS-1 selective oxidation catalysts: Insights from spectroscopic and density functional theory studies[J]. ACS Catal,2011,1(12):1665−1678. doi: 10.1021/cs2003774
    [51]
    BREGANTE D T, THORNBURG N E, NOTESTEIN J M, FLAHERTY D W. Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts[J]. ACS Catal,2018,8(4):2995−3010. doi: 10.1021/acscatal.7b03986
    [52]
    SALEM I A, EL-MAAZAWI M, ZAKI A B. Kinetics and mechanisms of decomposition reaction of hydrogen peroxide in presence of metal complexes[J]. Int J Chem Kinet,2000,32(11):643−666. doi: 10.1002/1097-4601(2000)32:11<643::AID-KIN1>3.0.CO;2-C
    [53]
    NIJHUIS T A, MUSCH M, MAKKEE M, MOULIJN J. A. The direct epoxidation of propene by molten salts[J]. Appl Catal A: Gen,2000,196:217−224. doi: 10.1016/S0926-860X(99)00476-7
    [54]
    MONNIER J R. The direct epoxidation of higher olefins using molecular oxygen[J]. Appl Catal A: Gen,2001,221:73−91. doi: 10.1016/S0926-860X(01)00799-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return