Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WU Jie-wen, FU Hui-yu, CHEN Xiao, LIANG Chang-hai. Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002
Citation: WU Jie-wen, FU Hui-yu, CHEN Xiao, LIANG Chang-hai. Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1321-1337. doi: 10.19906/j.cnki.JFCT.2023002

Advances in heterogeneous catalytic C−H bond carbonylation of alkynes with CO2

doi: 10.19906/j.cnki.JFCT.2023002
Funds:  The project was supported by the National Natural Science Foundation of China (22272014), Liaoning Revitalization Talent Program (XLYC1908033), Dalian Innovation Team Support Plan in Key Areas (2019RT10) and the Fundamental Research Funds for the Central Universities (DUT21TD103, DUT21LK02)
  • Received Date: 2022-11-20
  • Accepted Date: 2022-12-24
  • Rev Recd Date: 2022-12-24
  • Available Online: 2023-01-10
  • Publish Date: 2023-09-30
  • The carboxylation of C−H bond of terminal alkyne with CO2 to propargylic acid compounds conforms to the concept of green chemistry, which plays an important role in the field of organic and pharmaceutical intermediate synthesis. Under the background of "Carbon peaking and carbon neutrality", this reaction is also an effective way to realize the high value utilization of CO2. At present, this reaction system is mainly carried out through homogeneous catalysis. However, due to the advantages of heterogeneous catalysis system such as easy separation and recovery, heterogeneous catalytic C−H bond carbonylation of alkynes with CO2 has also gradually attracted attention. Based on the activation mechanism of C−H bond and CO2, relevant research has been carried out over coin metal catalysts. Through the synergistic effect of coin metal and carrier, the coupling of C−C bond is promoted to achieve the synthesis of propargylic acid compounds. In this paper, the heterogeneous catalytic C−H bond carbonylation of alkynes with CO2 is systematically reviewed. The activation of the system, the mechanism of carboxylation reaction, and the structural characteristics of the catalyst are analyzed and summarized, which provides a research idea for the development of efficient heterogeneous catalyst for carboxylation and related processes.
  • loading
  • [1]
    GU H, CHEN Y. A new damping model to forecasting carbon dioxide emission regional difference[Z]. SSRN. 2022.
    [2]
    XIN D L, AHMAD M, KHATTAK S I. Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States[J]. J Clean Prod,2022,379:134746. doi: 10.1016/j.jclepro.2022.134746
    [3]
    International Energy Agency. Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level[R]. IEA, 2021.
    [4]
    DECONTO R M, POLLARD D. Contribution of Antarctica to past and future sea-level rise[J]. Nature,2016,531(7596):591−597. doi: 10.1038/nature17145
    [5]
    TAO H, QIAN X, ZHOU Y, CHENG H. Research progress of clay minerals in carbon dioxide capture[J]. Renewable Sustainable Energy Rev,2022,164:112536.
    [6]
    TRAN N, TA Q T H, NGUYEN P K T. Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review[J]. Int J Energy Res,2022,46(13):17926−17951. doi: 10.1002/er.8479
    [7]
    ZICK M E, PUGH S M, LEE J-H, MILNER P J. Carbon dioxide capture at nucleophilic hydroxide sites in oxidation-resistant cyclodextrin-based metal-organic frameworks[J]. Angew Chem Int Ed,2022,61(30):e202206718.
    [8]
    KUNDU N, SARKAR S. Porous organic frameworks for carbon dioxide capture and storage[J]. J Environ Chem Eng,2021,9(2):105090. doi: 10.1016/j.jece.2021.105090
    [9]
    DENG Q, LING X, ZHANG K, TAN L, QI G, ZHANG J. CCS and CCUS technologies: Giving the oil and gas industry a green future[J]. Front Energy Res,2022,10:919330. doi: 10.3389/fenrg.2022.919330
    [10]
    何良年等编制. 二氧化碳化学[M]. 北京: 科学出版社, 2013.

    HE Liang-nian et al. Carbon Dioxide Chemistry[M]. BeiJjing: China Social Sciences Press, 2013.
    [11]
    何良年. 面向可持续发展的二氧化碳化学[J]. 科学通报,2020,65(31):3347−3348. doi: 10.1360/TB-2020-1119

    HE Liang-nian. Carbon dioxide chemistry towards sustainable development[J]. Chin Sci Bull,2020,65(31):3347−3348. doi: 10.1360/TB-2020-1119
    [12]
    SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387.
    [13]
    张志智, 周明东, 孙京, 方向晨. 二氧化碳羧基化利用探讨[J]. 化工进展,2019,38(1):229−243. doi: 10.16085/j.issn.1000-6613.2018-1108

    ZHANG Zhi-zhi, ZHOU Ming-dong, SUN Jing, FANG Xiang-chen. Carboxylative utilization of carbon dioxide[J]. Chem Ind Eng Prog,2019,38(1):229−243. doi: 10.16085/j.issn.1000-6613.2018-1108
    [14]
    ZHANG W Z. Silver-catalyzed carboxylation reaction using carbon dioxide as carboxylative reagent[C]//LU X B. Carbon Dioxide and Organometallics, 2016: 73-99.
    [15]
    YU B, XIE J-N, ZHONG C-L, LI W, HE L-N. Copper(I)@carbon-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure[J]. ACS Catal,2015,5(7):3940−3944. doi: 10.1021/acscatal.5b00764
    [16]
    PARASAR D, PONDURU T T, NOONIKARA-POYIL A, JAYARATNA N B, DIAS H V R. Acetylene and terminal alkyne complexes of copper(I) supported by fluorinated pyrazolates: Syntheses, structures, and transformations[J]. Dalton Trans,2019,48(42):15782−15794. doi: 10.1039/C9DT03350E
    [17]
    YU D, ZHANG Y. Copper- and copper-N-heterocyclic carbene-catalyzed C-H activating carboxylation of terminal alkynes with CO2 at ambient conditions[J]. PNAS,2010,107(47):20184−20189. doi: 10.1073/pnas.1010962107
    [18]
    ZHANG W-Z, LI W-J, ZHANG X, ZHOU H, LU X-B. Cu(I)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2[J]. Org Lett,2010,12(21):4748−4751. doi: 10.1021/ol102172v
    [19]
    INAMOTO K, ASANO N, KOBAYASHI K, YONEMOTO M, KONDO Y. A copper-based catalytic system for carboxylation of terminal alkynes: Synthesis of alkyl 2-alkynoates[J]. Org Biomol Chem,2012,10(8):1514−1516. doi: 10.1039/c2ob06884b
    [20]
    FUKUE Y, OI S, INOUE Y. Direct synthesis of alkyl 2-alkynoates from alk-1-ynes, CO2, and bromoalkanes catalysed by copper(I) or silver(I) salt[J]. J Chem Soc, Chem Commun,1994,(18):2091−2091. doi: 10.1039/c39940002091
    [21]
    ZHANG X, ZHANG W-Z, SHI L-L, ZHU C, JIANG J-L, LU X-B. Ligand-free Ag(I)-catalyzed carboxylative coupling of terminal alkynes, chloride compounds, and CO2[J]. Tetrahedron,2012,68(44):9085−9089. doi: 10.1016/j.tet.2012.08.053
    [22]
    WANG W-H, FENG X, SUI K, FANG D, BAO M. Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: Synthesis of propiolic acids[J]. J CO2 Util,2019,32:140−145. doi: 10.1016/j.jcou.2019.04.011
    [23]
    PAPASTAVROU A T, PAUZE M, GÓMEZ-BENGOA E, VOUGIOUKALAKIS G C. Unprecedented multicomponent organocatalytic synthesis of propargylic esters via CO2 activation[J]. ChemCatChem,2019,11(21):5379−5386. doi: 10.1002/cctc.201900207
    [24]
    PIEBER B, GLASNOV T, KAPPE C O. Flash carboxylation: Fast lithiation-carboxylation sequence at room temperature in continuous flow[J]. RSC Adv,2014,4(26):13430−13433. doi: 10.1039/c4ra01442a
    [25]
    TATE B K, JORDAN A J, BACSA J, SADIGHI J P. Stable mono- and dinuclear organosilver complexes[J]. Organometallics,2016,36(5):964−974.
    [26]
    SHI J-B, BU Q, LIU B-Y, DAI B, LIU N. Organocatalytic strategy for the fixation of CO2 via carboxylation of terminal alkynes[J]. J Org Chem,2021,86(2):1850−1860. doi: 10.1021/acs.joc.0c02673
    [27]
    ZHANG X, WANG D, JING M, LIU J, ZHAO Z, XU G, SONG W, WEI Y, SUN Y. Ordered mesoporous CeO2‐supported Ag as an effective catalyst for carboxylative coupling reaction using CO2[J]. ChemCatChem,2019,11(8):2089−2098. doi: 10.1002/cctc.201900039
    [28]
    MOLLA R A, GHOSH K, BANERJEE B, LQUBAL M A, KUNDU S K, ISLAM S M, BHAUMIK A. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure[J]. J Colloid Interface Sci,2016,477:220−229. doi: 10.1016/j.jcis.2016.05.037
    [29]
    MANJOLINHO F, ARNDT M, GOOSSEN K, GOOSSEN L J. Catalytic C–H carboxylation of terminal alkynes with carbon dioxide[J]. ACS Catal,2012,2(9):2014−2021. doi: 10.1021/cs300448v
    [30]
    陈凯宏, 李红茹, 何良年. CO2活化和转化策略研究进展[J]. 有机化学,2020,40(8):2195−2207. doi: 10.6023/cjoc202004030

    CHEN Kai-hong, LI Hong-ru, HE Liang-nian. Advance and prospective on CO2 activation and transformation strategy[J]. Chin J Inorg Chem,2020,40(8):2195−2207. doi: 10.6023/cjoc202004030
    [31]
    JI G, ZHAO Y, LIU Z. Design of porous organic polymer catalysts for transformation of carbon dioxide[J]. Green Chem,2022,3(2):96−110.
    [32]
    YU X, YANG Z, ZHANG F, LIU Z, YANG P, ZHANG H, YU B, ZHAO Y, LIU Z. A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO2[J]. Chem Commum,2019,55(83):12475−12478.
    [33]
    YANG Z Z, ZHAO Y, ZHANG H, YU B, MA Z, JI G, LIU Z. Fluorinated microporous organic polymers: design and applications in CO2 adsorption and conversion[J]. Chem Commum,2014,50(90):13910−13913.
    [34]
    邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学 上[M]. 4版. 北京: 北京大学出版社, 2016.

    XING Qi-yi, PEI Wei-wei, XU Rui-qiu, PEI Jian. Basic Organic Chemisty (I) [M]. 4th ed. Beijing: Peking University Press, 2016.
    [35]
    ZHANG L, BU R, LIU X-Y, MU P-F, GAO E-N. Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO2[J]. Green Chem,2021,23(19):7620−7629. doi: 10.1039/D1GC02118D
    [36]
    GONG Y, YUAN Y, CHEN C, ZHANG P, WANG J, ZHUIYKOV S, CHAEMCHUEN S, VERPOORT F. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation[J]. J Catal,2019,371:106−115. doi: 10.1016/j.jcat.2019.01.036
    [37]
    JOVER J, MASERAS F. Computational characterization of the mechanism for coinage-metal-catalyzed carboxylation of terminal alkynes[J]. J Org Chem,2014,79(24):11981−11987. doi: 10.1021/jo501837p
    [38]
    YUAN Y, CHEN C, ZENG C, MOUSAVI B, CHAEMCHUEN S, VERPOORT F. Carboxylation of terminal alkynes with carbon dioxide catalyzed by an in situ Ag2O/N-heterocyclic carbene precursor system[J]. ChemCatChem,2017,9(5):882−887. doi: 10.1002/cctc.201601379
    [39]
    SHI J, ZHANG L, SUN N, HU D, SHEN Q, MAO F, GAO Q, WEI W. Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions[J]. ACS Appl Mater Inter,2019,11(32):28858−28867. doi: 10.1021/acsami.9b07991
    [40]
    LIU X H, MA J G, NIU Z, YANG G-M, CHENG P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure[J]. Angew Chem Int Ed,2015,54(3):988−991. doi: 10.1002/anie.201409103
    [41]
    ZHU N N, LIU X H, LI T, MA J-G, CHENG P, YANG G-M. Composite system of Ag nanoparticles and metal-organic frameworks for the capture and conversion of carbon dioxide under mild conditions[J]. Inorg Chem,2017,56(6):3414−3420. doi: 10.1021/acs.inorgchem.6b02855
    [42]
    MODAK A, BHANJA P, BHAUMIK A. Microporous nanotubes and nanospheres with iron-catechol sites: Efficient lewis acid catalyst and support for Ag nanoparticles in CO2 fixation reaction[J]. Chem Eur J,2018,24(53):14189−14197. doi: 10.1002/chem.201802319
    [43]
    WU Z, LIU Q, YANG X, YE X, DUAN H, ZHANG J, ZHAO B, HUANG Y. Knitting aryl network polymers-incorporated Ag nanoparticles: A mild and efficient catalyst for the fixation of CO2 as carboxylic acid[J]. ACS Sustainable Chem Eng,2017,5(11):9634−9639. doi: 10.1021/acssuschemeng.7b02678
    [44]
    ZHANG X, LI Q, FAN M, XU G, LIU X, GONG H, DENG J, MENG S, WANG C, WANG Z. Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers[J]. J CO2 Util,2022,64:102179. doi: 10.1016/j.jcou.2022.102179
    [45]
    ZHANG W, MEI Y, HUANG X, WU P, WU H, HE M. Size-controlled growth of silver nanoparticles onto functionalized ordered mesoporous polymers for efficient CO2 upgrading[J]. ACS Appl Mater Inter,2019,11(47):44241−44248. doi: 10.1021/acsami.9b14927
    [46]
    LAN X, LI Q, CAO L, DU C, RICARDEZ-SANDOVAL L, BAI G. Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: A highly efficient catalyst for CO2 conversion[J]. Appl Surf Sci,2020,508:145220.
    [47]
    LI M, ZHANG L, ZHANG Z, SHI J, LIU Y, CHEN J, SUN N, WEI W. SiO2-Coated Ag nanoparticles for conversion of terminal alkynes to propolic acids via CO2 insertion[J]. ACS Appl Nano Mater,2021,4(7):7107−7115. doi: 10.1021/acsanm.1c01101
    [48]
    ZHANG X, LIU H, SHI Y, HAN J, YANG Z, ZHANG Y, LONG C, GUO J, ZHU Y, QIU X. Boosting CO2 conversion with terminal alkynes by molecular architecture of graphene oxide-supported Ag nanoparticles[J]. Matter,2020,3(2):558−570. doi: 10.1016/j.matt.2020.07.022
    [49]
    WU J, MA S, CUI J, YANG Z, ZHANG J. Nitrogen-rich porous organic polymers with supported Ag nanoparticles for efficient CO2 conversion[J]. Nanomaterials,2022,12(18):3088. doi: 10.3390/nano12183088
    [50]
    DANG Q Q, LIU C Y, WANG X M, ZHANG X-M. Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction[J]. ACS Appl Mater Interfaces,2018,10(33):27972−27978. doi: 10.1021/acsami.8b08964
    [51]
    LAN X, DU C, CAO L, SHE T, LI Y, BAI G. Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO2 conversion[J]. ACS Appl Mater Interfaces,2018,10(45):38953−38962. doi: 10.1021/acsami.8b14743
    [52]
    LAN X, LI Y, DU C, CAO L, DU C, SHE T, LI Q, BAI G. Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO2 conversion[J]. Chem Eur J,2019,25(36):8560−8569. doi: 10.1002/chem.201900563
    [53]
    LIU J, ZHANG X, WEN B, LI Y, WU J, WANG Z, WU T, ZHAO R, YANG S. Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO2 chemical conversion at atmospheric pressure[J]. Catal Sci Technol,2021,11(9):3119−3127. doi: 10.1039/D0CY02473B
    [54]
    WU Z, SUN L, LIU Q, YANG X, YE X, HU Y, HUANG Y. A schiff base-modified silver catalyst for efficient fixation of CO2 as carboxylic acid at ambient pressure[J]. Green Chem,2017,19(9):2080−2085. doi: 10.1039/C7GC00923B
    [55]
    ZHANG W, WANG Q, WU H, WU P, HE M. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: An efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates[J]. Green Chem,2014,16(11):4767−4774. doi: 10.1039/C4GC01245C
    [56]
    MENG Y, GU D, ZHANG F, SHI Y, YANG H, LI Z, YU C, TU B, ZHAO, D. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angew Chem Int Ed,2005,44(43):7053−7059. doi: 10.1002/anie.200501561
    [57]
    LIU X, JIN R, CHEN D, CHEN L, XING S, XING H, XING Y, SU Z. In situ assembly of monodispersed Ag nanoparticles in the channels of ordered mesopolymers as a highly active and reusable hydrogenation catalyst[J]. J Mater Chem A,2015,3(8):4307−4313. doi: 10.1039/C4TA06049K
    [58]
    WANG H, GU X-K, ZHENG X, PAN H, ZHU J, CHEN S, CAO L, LI W-X, LU J. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity[J]. Sci Adv,2019,5(1):eaat6413. doi: 10.1126/sciadv.aat6413
    [59]
    QI S-C, WU J-K, LU J, YU G-X, ZHU R-R, LIU Y, LIU X-Q, SUN L-B. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid-base interaction?[J]. J Mater Chem A,2019,7(30):17842−17853. doi: 10.1039/C9TA04785A
    [60]
    WANG W-J, SUN Z-H, CHEN S-C, QIAN J-F, HE M-Y, CHEN Q. Microwave-assisted fabrication of a mixed-ligand [Cu4( $ \mathrm{\mu } $3-OH)2]-cluster-based metalorganic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide[J]. Appl Organomet Chem,2021,35(8):e6288.
    [61]
    YANG P, ZUO S, ZHANG F, YU B, GUO S, YU X, ZHAO Y, ZHANG J, LIU Z. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2[J]. Ind Eng Chem Res,2020,59(16):7327−7335. doi: 10.1021/acs.iecr.0c00547
    [62]
    KESAVAN V, BALARAMAN K. Efficient copper(II) acetate catalyzed homo- and heterocoupling of terminal alkynes at ambient conditions[J]. Synthesis,2010,2010(20):3461−3466. doi: 10.1055/s-0030-1258199
    [63]
    BONDARENKO G N, DVURECHENSKAYA E G, MAGOMMEDOV E S, BELETSKAYA I P. Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes[J]. Catal Lett,2017,147(10):2570−2580. doi: 10.1007/s10562-017-2127-0
    [64]
    CHAUGULE A A, TAMBOLI A H, KIM H. CuCl2@Poly-IL catalyzed carboxylation of terminal alkynes through CO2 utilization[J]. Chem Eng J,2017,326:1009−1019. doi: 10.1016/j.cej.2017.06.011
    [65]
    SHI G, XU W, WANG J, YUAN Y, CHAEMCHUEN S, VERPOORT F. A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions[J]. J CO2 Util,2020,39:101177. doi: 10.1016/j.jcou.2020.101177
    [66]
    WANG X-Y, LU H, HUANG K-L, ZHANG C-P, TIAN F, HE M-Y, CHEN S-C, CHEN Q. Synthesis, characterization, ion-exchange, and catalytic properties of three isostructural copper(II) coordination polymers with a flexible bis(triazole) ligand[J]. J Solid State Chem,2022,312:123201. doi: 10.1016/j.jssc.2022.123201
    [67]
    SUN Z-H, WANG X-Y, HUANG K-L, HE M-Y, CHEN S-C. Heterogeneous catalytic carboxylation of terminal alkynes with CO2 over a copper(II)-based metal-organic framework catalyst[J]. Catal Commun,2022,169:106472. doi: 10.1016/j.catcom.2022.106472
    [68]
    BU R, ZHANG L, GAO L-L, SUN W-J, YANG S-L, GAO E-Q. Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes[J]. Mol Catal,2021,499:111319. doi: 10.1016/j.mcat.2020.111319
    [69]
    LIU Y, CHAI X, CAI X, CHEN M, JIN R, DING W, ZHU Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation[J]. Angew Chem Int Ed,2018,57(31):9775−9779. doi: 10.1002/anie.201805319
    [70]
    YUN Y, SHENG H, BAO K, XU L, ZHANG Y, ASTRUC D, ZHU M. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67[J]. J Am Chem Soc,2020,142(9):4126−4130. doi: 10.1021/jacs.0c00378
    [71]
    VELAZQUEZ HD, WU Z-X, VANDICHEL M, VERPOORT F. Inserting CO2 into terminal alkynes via Bis-(NHC)-metal complexes[J]. Catal Letters,2016,463−471.
    [72]
    LI S, SUN J, ZHANG Z, XIE R, FANG X, ZHOU M. Carboxylation of terminal alkynes with CO2 using novel silver N-heterocyclic carbene complexes[J]. Dalton Trans,2016,45(26):10577−10584. doi: 10.1039/C6DT01746K
    [73]
    YU B, DIAO Z-F, GUO C-X, ZHONG C-L, HE L-N, ZHAO Y-N, SONG Q-W, LIU A-H, WANG J-Q. Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate[J]. Green Chem,2013,15(9):2401−2407. doi: 10.1039/c3gc40896e
    [74]
    SHI X-L, SUN B, HU Q, LIU K, LI P, LIU B. A novel fiber-supported cooperative catalyst for the carboxylation of terminal alkynes through CO2 utilization[J]. Chem Eng J,2020,395:125084. doi: 10.1016/j.cej.2020.125084
    [75]
    李民康, 张莉娜, 张阿方, 赵永慧, 孙楠楠, 魏伟. CO2插入C—H(sp)键制备丙炔酸衍生物的研究进展[J]. 化工进展,2021,40(6):3421−3433.

    LI Min-kang, ZHANG Li-na, ZHANG A-fang, ZHAO Yong-hui, SUN Nan-nan, WEI Wei. Research advances on the carboxylation of terminal alkynes with CO2[J]. Chem Ind Eng Prog,2021,40(6):3421−3433.
    [76]
    DUTTA G, JANA A K, SINGH D K, ESWARAMOORTHY M, NATARAJAN S. Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal-organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure[J]. Chem Asian J,2018,13(18):2677−2684. doi: 10.1002/asia.201800815
    [77]
    TONIOLO D, BOBBINK F D, DYSON P J, MAZZANTI M. Anhydrous conditions enable the catalyst‐free carboxylation of aromatic alkynes with CO2 under mild conditions[J]. Helv Chim Acta,2020,103(2):1−6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (634) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return