Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
DU Jia-xing, LI Chen-xu, ZHOU Xing-xing, WAN Gan, XU Lin-lin, WANG Ben, LI De-nian, SUN Lu-shi. Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003
Citation: DU Jia-xing, LI Chen-xu, ZHOU Xing-xing, WAN Gan, XU Lin-lin, WANG Ben, LI De-nian, SUN Lu-shi. Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 949-958. doi: 10.19906/j.cnki.JFCT.2023003

Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution

doi: 10.19906/j.cnki.JFCT.2023003
Funds:  The project was supported by the National Key R&D Program of China (2019YFC1906605)
  • Received Date: 2022-10-26
  • Accepted Date: 2022-12-30
  • Rev Recd Date: 2022-12-29
  • Available Online: 2023-01-10
  • Publish Date: 2023-07-01
  • The pyrolysis experiments of penicillin residues at different temperatures (300–700 ℃) were carried out in a fixed bed to study the yield of three-phase products and the morphology and distribution of nitrogen at different pyrolysis temperatures. The mechanism of the pyrolysis reaction of amino acids (aspartic acid, histidine and glutamic acid) contained in the bacterial residues and 2, 5-piperazinedione (DKP) was investigated by ReaxFF molecular dynamics simulations. The results show that the yield of gas increases with the increase of temperature, while the char shows a declining trend. The yield of oil increases to a maximum of 42.3% at 500 ℃ and then decreases as temperature increase. The pattern of nitrogen content in the product with temperature is consistent with the trend of yield. Compared with H2 and hydrocarbon gases, CO2 and CO aere more easily produced at low temperatures. Amides are the main nitrogenous compounds in oil, and the proportion of amides gradually decreases as the pyrolysis temperature increases. The deamination reaction of amino acids is the main source of NH3, and dehydration cyclization occurs between amino acid molecules to produce DKP-like compounds. Gases such as NH3, HCN, HNCO and R-NH, R-NH-R radicals are generated during the pyrolysis of DKP. Nitrogen-containing radicals combine with other radicals or undergo cyclization to form amides, ketones and other compounds present in oil and char.
  • loading
  • [1]
    王冰, 刘惠玲, 王璞. 青霉素菌渣理化特性及其资源化利用研究现状[J]. 环境工程,2014,32(2):139−142.

    WANG Bing, LIU Hui-ling, WANG Pu. Current status of research on the physicochemical properties of penicillin residue and its resource utilization[J]. Environ Eng,2014,32(2):139−142.
    [2]
    王秋菊. 抗生素菌渣与污泥热解资源化利用效能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    WANG Qiu-ju. Research on the efficiencies and mechanisms of antibiotic residues and sludge pyrolysis for research utilization[D]. Harbin: Harbin Institute of Technology, 2021.
    [3]
    臧飞. 抗生素酵菌渣减量化处理研究[J]. 煤炭与化工,2019,42(2):132−134.

    ZANG Fei. Study of antibiotic fermentation residue reduction treatment[J]. Coal Chem Ind,2019,42(2):132−134.
    [4]
    MENG X L, MIAO Y, ZHU Y, WANG X H. Study on the antibiotic bacterial residue for the human health risk assessment[J]. Adv Mat Res,2013,788:476−479.
    [5]
    AGEGNEHU G, SRIVASTAVA A K, BIRD M I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review[J]. Appl Soil Ecol,2017,119:156−170. doi: 10.1016/j.apsoil.2017.06.008
    [6]
    陈冠益, 刘环博, 李健, 颜蓓蓓, 董磊. 抗生素菌渣处理技术研究进展[J]. 环境化学,2021,40(2):459−473. doi: 10.7524/j.issn.0254-6108.2020061302

    CHEN Guan-yi, LIU Huan-bo, LI Jian, YAN Bei-bei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environ Chem,2021,40(2):459−473. doi: 10.7524/j.issn.0254-6108.2020061302
    [7]
    WANG Z Q, HONG C, XING Y, LI Z X, LI Y F, FENG L H, HU J S, SUN H P. Thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue[J]. Bioresour Technol,2019,277:46−54. doi: 10.1016/j.biortech.2019.01.030
    [8]
    DU Y, JIANG X, LV G, MA X J, JIN Y Q, WANG F, CHI Y, YAN J H. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Convers Manag,2014,88:459−463. doi: 10.1016/j.enconman.2014.08.068
    [9]
    王斌, 董玉平, 毛叶兵, 常加富. 抗生素菌渣的流化床快速热解特性[J]. 化工进展,2017,36(3):1113−1119. doi: 10.16085/j.issn.1000-6613.2017.03.046

    WANG Bin, DONG Yu-ping, MAO Ye-bing, CHANG Jia-fu. Fast pyrolysis behavior of fungus residues in a fluidized bed reactor[J]. Chem Ind Eng Prog,2017,36(3):1113−1119. doi: 10.16085/j.issn.1000-6613.2017.03.046
    [10]
    李益飞. 青霉素菌渣热解产物特性及生物油催化脱氮机制[D]. 北京: 北京科技大学, 2021.

    LI Yi-fei. Characteristics of pyrolysis products of penicillin fermentation residue and mechanism of bio-oil catalytic denitrification[D]. Beijing: University of Science and Techonology Beijing, 2021.
    [11]
    ZHANG G Y, MA D C, PENG C N, LIU X L, XU G W. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chem Eng J,2014,252:230−238. doi: 10.1016/j.cej.2014.04.092
    [12]
    詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展,2016,28(12):1880−1890. doi: 10.7536/PC160438

    ZHAN Hao, ZHANG Xiao-hong, YIN Xiu-li, WU Chuang-zhi. Study on the formation of N-containing pollutants during thermochemical conversion of biomass[J]. Prog Chem,2016,28(12):1880−1890. doi: 10.7536/PC160438
    [13]
    CHU B W, ZHANG S, LIU J, MA Q X, HE H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic[J]. J Environ Sci (China),2021,99(1):346−353.
    [14]
    COSTANZO W, HILTEN R, JENA U, DAS K C, KASTNER J R. Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules[J]. Algal Res,2016,13:53−68. doi: 10.1016/j.algal.2015.11.009
    [15]
    詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报,2017,45(10):1219−1229. doi: 10.3969/j.issn.0253-2409.2017.10.009

    ZHAN Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol,2017,45(10):1219−1229. doi: 10.3969/j.issn.0253-2409.2017.10.009
    [16]
    ZHU X, YANG S, WANG L, LIU Y C, QIAN F, YAO W Q, ZHANG S C, CHEN J M. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut,2016,211:20−27. doi: 10.1016/j.envpol.2015.12.032
    [17]
    ZHANG M, SHU L, SHEN X, GUO X Y, TAO S, XING B. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds[J]. Environ Pollut,2014,195:84−90. doi: 10.1016/j.envpol.2014.08.018
    [18]
    HONG D, GUO X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel,2017,210:58−66. doi: 10.1016/j.fuel.2017.08.061
    [19]
    ZHAO T, LI T, XIN Z, ZOU L, ZHANG L. A ReaxFF-based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate[J]. Energy Fuels,2018,32(2):2156−2162. doi: 10.1021/acs.energyfuels.7b03332
    [20]
    RISMILLER S C, GROVES M M, MENG M, DONG Y, LIN J. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations[J]. Fuel,2018,215:835−843. doi: 10.1016/j.fuel.2017.11.108
    [21]
    DU J, YU J, QIAO L, TOMAS R R, SUN L S. The reaction mechanism and sulfur evolution during vulcanized nature rubber pyrolysis in the atmosphere of H2O: A ReaxFF molecular dynamics study[J]. Polym Degrad Stab,2022,203:110064. doi: 10.1016/j.polymdegradstab.2022.110064
    [22]
    WANG J P, WANG Y N, LI G Y, DING Z Z, LU Q, LING Y H. ReaxFF molecular dynamics study on nitrogen-transfer mechanism in the hydropyrolysis process of lignite[J]. Chem Phys Lett,2020,744:137214. doi: 10.1016/j.cplett.2020.137214
    [23]
    MA D, ZHANG G, ZHAO P, AREEPRAST C, SHEN Y F, YOSHIKAWA K, XU G. Hydrothermal treatment of antibiotic mycelial dreg: More understanding from fuel characteristics[J]. Chem Eng J,2015,273:147−155. doi: 10.1016/j.cej.2015.01.041
    [24]
    WU Z, SUGIMOTO Y, KAWASHIMA H. Catalytic nitrogen release during a fix-bed pyrolysis of model coal containing pyrrolic or pyridinic nitrogen[J]. Fuel,2001,80(2):251−254. doi: 10.1016/S0016-2361(00)00085-5
    [25]
    WAN G, YU J, WANG X Y, SUN L S. Study on the pyrolysis behavior of coal-water slurry and coal-oil-water slurry[J]. J Energy Inst,2022,100:10−21. doi: 10.1016/j.joei.2021.10.006
    [26]
    常晓囡, 李再兴, 李益飞, 郑子轩. 抗生素菌渣催化热解特性的研究[J]. 环境工程,2022,40(5):18−24. doi: 10.13205/j.hjgc.202205003

    CHANG Xiao-nan, LI Zai-xing, LI Yi-fei, ZHENG Zi-xuan. Study on catalytic pyrolysis characteristics of antibiotic residue[J]. Environ Eng,2022,40(5):18−24. doi: 10.13205/j.hjgc.202205003
    [27]
    WEI X, YU J, DU J X, SUN L S. A ReaxFF molecular dynamic study on pyrolysis behavior and sulfur transfer during pyrolysis of vulcanized natural rubber[J]. Waste Manag,2022,139:39−49. doi: 10.1016/j.wasman.2021.12.022
    [28]
    HUANG Y, DONG X, DONG Y, YU Y Z. A molecular dynamics simulation study on nitrobenzene and OH radical in supercritical water[J]. J Mol Liq,2015,206:278−284. doi: 10.1016/j.molliq.2015.03.001
    [29]
    QI T, BAUSCHLICHER C W, LAWSON J W, DESAI T G, REED E, J. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations[J]. J Phys Chem A,2013,117(44):11115−11125. doi: 10.1021/jp4081096
    [30]
    MAGDZIARZ A, WERLE S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS[J]. Waste Manag,2014,34(1):174−179. doi: 10.1016/j.wasman.2013.10.033
    [31]
    HELOU C, MARIER D, JACOLOT P, NAJAR L A, LERIDON C N, TESSIER F J, WIDEHEM P G. Microorganisms and maillard reaction products: A review of the literature and recent findings[J]. Amino Acids,2014,46(2):267−277. doi: 10.1007/s00726-013-1496-y
    [32]
    DEBONO O, VILLOT A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J]. J Anal Appl Pyrolysis,2015,114:222−234. doi: 10.1016/j.jaap.2015.06.002
    [33]
    陈德民. 生物质中氮赋存形式与热解过程氮迁移转化实验研究[D]. 武汉: 华中科技大学, 2016.

    CHEN De-min. Study on the distribution characteristics of nitrogen and releasing and transformation of nitrogen during pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return