Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
NIU Jie, WANG Liang, LI Chun-hu. Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021
Citation: NIU Jie, WANG Liang, LI Chun-hu. Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021

Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2

doi: 10.19906/j.cnki.JFCT.2023021
  • Received Date: 2023-01-16
  • Accepted Date: 2023-03-10
  • Rev Recd Date: 2023-02-28
  • Available Online: 2023-03-24
  • Publish Date: 2023-10-10
  • Mo-doped Zn0.5Cd0.5S was prepared and compounded with Ti3C2 nanosheets by hydrothermal method. The crystal structure, surface composition, microscopic morphology, and photoelectric properties of the photocatalysts were analyzed by XRD, SEM, TEM, XPS, UV-vis DRS, fluorescence spectroscopy, transient photocurrent methods. The results showed that the doping of Mo caused changes in the lattice structure of Zn0.5Cd0.5S, while the loading of Ti3C2 increased the photocatalytic active site and accelerated the electron transfer rate. The photocatalytic activity was investigated by degrading the tetracycline solution under visible light irradiation with simultaneous H2 production. The results showed that with the synergistic effect of Mo doping and loaded Ti3C2, the degradation rate of tetracycline (TC) reached more than 70% within 60 min, while the H2 yield reached 883 μmol/(g·h). The radical capture experiments proved that the main active substance for degradation was holes and for H2 production was electrons.
  • loading
  • [1]
    FANG W L, WANG L, LI C H. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. J Fuel Chem Technol,2022,50(4):446−454. doi: 10.1016/S1872-5813(21)60174-3
    [2]
    LEI Z, CAO X, FAN J, HU X, HU J, LI N, SUN T, LIU E. Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge[J]. Chem Eng J,2023,457:141249. doi: 10.1016/j.cej.2022.141249
    [3]
    WEI Z, XU M, LIU J, GUO W, JIANG Z, SHANGGUAN W. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis[J]. Chin J Catal,2020,41(1):103−113. doi: 10.1016/S1872-2067(19)63479-0
    [4]
    LIU S, ZHANG B, YANG Z, XUE Z, MU T. Deep eutectic solvothermal synthesis NiS2/CdS for visible light driven valorization of biomass intermediate 5-hydroxymethylfurfural (HMF) integrated with H2 production[J]. Green Chem, 2023, 25: 2620.
    [5]
    CHONG W K, NG B J, KONG X Y, TAN L L, PUTRI L K, CHAI S P. Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation[J]. Appl Catal,2023,325:122372. doi: 10.1016/j.apcatb.2023.122372
    [6]
    TAI Z, SUN G, WANG T, LI Z, TAI J. Construction of PdS@MIL-125-NH2@ZnS type-II heterostructure with efficient charge separation for boosted photocatalytic hydrogen evolution[J]. J Mater Sci Technol,2023,145:116−124. doi: 10.1016/j.jmst.2022.10.041
    [7]
    WANG Y, LIU C, KONG C, ZHANG F. Defect MoS2 and Ti3C2 nanosheets co-assisted CdS to enhance visible-light driven photocatalytic hydrogen production[J]. Colloids Surf,2022,652:129746. doi: 10.1016/j.colsurfa.2022.129746
    [8]
    ZHANG Y, LU D, LI H, WANG H, ZHANG B, WANG J, WU Q, ZENG Y, ZHANG X, ZHOU M, D N, HAO H, PEI H, FAN H. Enhanced visible light-driven photocatalytic hydrogen evolution and stability for noble metal-free MoS2/Zn0.5Cd0.5S heterostructures with W/Z phase junctions[J]. Appl Surf Sci,2022,586:152770. doi: 10.1016/j.apsusc.2022.152770
    [9]
    MARKOVSKAYA D V, CHEREPANOVA S V, SARAEV A A, GERASIMOV E Y, KOZLOVA E A. Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and NizCd0.3Zn0.7S1 + z[J]. Chem Eng J,2015,262:146−155. doi: 10.1016/j.cej.2014.09.090
    [10]
    LI H, WANG Z, HE Y, MENG S, XU Y, CHRN S, FU X. Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance[J]. J Colloid Interface Sci,2019,535:469−480. doi: 10.1016/j.jcis.2018.10.018
    [11]
    JIA W L, WU X, LIU Y, ZHAO J Y, ZHANG Y, LIU P F, CHENG Q, YANG H G. Porous ZnIn2S4 with confined sulfur vacancies for highly efficient visible-light-driven photocatalytic H2 production[J]. J Mater,2022,10(48):25586−25594.
    [12]
    YANG Y, REN W, ZHENG X, MENG S, CAI C, FU X, CHEN S. Decorating Zn0.5Cd0.5S with C, N Co-doped CoP: An efficient dual-functional photocatalyst for H2 evolution and 2, 5-diformylfuran oxidation[J]. ACS Appl Mater Interfaces,2022,14(49):54649−54661. doi: 10.1021/acsami.2c13859
    [13]
    DEBNATH B, DHINGRA S, SHARMA V, KRISHNAN V, NAJARAGA C M. Efficient photocatalytic generation of hydrogen by twin ZnCdS nanorods decorated with noble metal-free co-catalyst and reduction of 4-nitrophenol in water[J]. Appl Surf Sci,2021,550:149367. doi: 10.1016/j.apsusc.2021.149367
    [14]
    YANG H, MENG A L, YANG L N, LI Z J. Construction of S-scheme heterojunction consisting of Zn0.5Cd0.5S with sulfur vacancies and NixCo1-x(OH)2 for highly efficient photocatalytic H2 evolution[J]. Chem Eng J,2022,432:134371. doi: 10.1016/j.cej.2021.134371
    [15]
    AHMAD I, ZOU Y, YAN J, Liu Y, SHUKRULLAH S, NAZ M Y, HUSSAIN H, KHAN W Q, KHALID N R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications[J]. Adv Colloid Interface Sci,2022,311:102830.
    [16]
    MEI Z, ZHANG B, ZHENG J, YUAN S, ZHUO Z, MENG X, CHEN Z, AMINE K, YANG W, WANG L W, WANG W, WANG S, GONG Q, LI J, LIU F S, PAN F. Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation[J]. Nano Energy,2016,26:405−416. doi: 10.1016/j.nanoen.2016.05.051
    [17]
    SHE H, SUN Y, LI S, HUANG J, WANG L, ZHU G, WANG Q. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance[J]. Appl Catal,2019,245:439−447. doi: 10.1016/j.apcatb.2019.01.002
    [18]
    YANG H, SUN Y, PEI W, WANG X, LUO Y, JIN Y, ZHANG Y, YI X, LI Q, FAN F, LI X. Insight into energy level modulation via Mn doping solid solutions for enhanced photocatalytic hydrogen production[J]. Inorg Chem Commun,2022,135:109041. doi: 10.1016/j.inoche.2021.109041
    [19]
    WANG H, HU P, ZHOU J, ROEFFAERS M B J, WENG B, WANG Y, JI H. Ultrathin 2D/2D Ti3C2Tx/semiconductor dual-functional photocatalysts for simultaneous imine production and H2 evolution[J]. J Mater,2021,9(35):19984−19993.
    [20]
    TAO J, WANG M, LIU G, LIU Q, LU L, WAN N, TANG H, QIAO G. Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction[J]. J Adv Ceram,2022,11(7):1117−1130. doi: 10.1007/s40145-022-0598-y
    [21]
    GUO P, ZHANG D, LIU X, LIU W, WANG R, ZHANG Z, QIU S. In situ self-assembly of mesoporous Zn-Cd-Mo-S quaternary metal sulfides with double heterojunction synergistic charge transfer for boosting photocatalytic hydrogen production[J]. J Alloys Compd,2022,921:166066. doi: 10.1016/j.jallcom.2022.166066
    [22]
    WANG A, ZHANG L, LI X, GAO Y, LI N, LU G, GE L. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance[J]. Chin J Catal,2022,43(5):1295−1305. doi: 10.1016/S1872-2067(21)63912-8
    [23]
    RAN J, GAO G, LI F T, MA T Y, DU A, QIAO S Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun,2017,8:13907. doi: 10.1038/ncomms13907
    [24]
    FAN W, CHANG H, PANG W, LI Y, XIAO C, JIANG Y, JIANG Z, YIN G. Ultra-thin nanosheet assembled 3D honeycomb-like Zn0.5Cd0.5S for boosting photocatalytic H2 evolution[J]. Sep Purif,2023,309:123102. doi: 10.1016/j.seppur.2023.123102
    [25]
    NG B J, PUTRI L K, KONG X Y, SHAK K P Y, PASBAHSHS P, CHAI S P, MOHAMED A R. Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution[J]. Appl Catal,2018,224:360−367. doi: 10.1016/j.apcatb.2017.10.005
    [26]
    LI Z, ZHOU W, TANG Y, TAN X, ZHANG Y, GENG Z, GUO Y, LIU L, YU T, YE J. Insights into the operation of noble-metal-free cocatalyst 1T-WS2-decorated Zn0.5Cd0.5S for enhanced photocatalytic hydrogen evolution[J]. ChemSusChem,2021,14(21):4752−4763. doi: 10.1002/cssc.202101670
    [27]
    LI C, CHE H, YAN Y, LIU C, DONG H. Z-scheme AgVO3/ZnIn2S4 photocatalysts: “One Stone and Two Birds” strategy to solve photocorrosion and improve the photocatalytic activity and stability[J]. Chem Eng J,2020,398:125523. doi: 10.1016/j.cej.2020.125523
    [28]
    NAZ H, ALI R N, LIU Q, YANG S, XIANG B. Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells[J]. J Colloid Interface Sci,2018,512:548−554. doi: 10.1016/j.jcis.2017.10.041
    [29]
    HAO H, QIN M, LI P. Structural, optical, and magnetic properties of Co-doped ZnO nanorods fabricated by a facile solution route[J]. J Alloys Compd,2012,515:143−148. doi: 10.1016/j.jallcom.2011.11.112
    [30]
    AN R S, ZHAO L Y, BAI H, WANG L, LI C H. Decoration of Au NPs on hollow structured BiOBr with surface oxygen vacancies for enhanced visible light photocatalytic H2O2 evolution[J]. J Solid State Chem,2022,306:122722. doi: 10.1016/j.jssc.2021.122722
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return