Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WANG Yong-bin, ZHANG Jian, LIANG Wan-cai, CAO Guo-qiang, LI Chun-yu, ZHAO Jian-tao, FANG Yi-tian. Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022
Citation: WANG Yong-bin, ZHANG Jian, LIANG Wan-cai, CAO Guo-qiang, LI Chun-yu, ZHAO Jian-tao, FANG Yi-tian. Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022

Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production

doi: 10.19906/j.cnki.JFCT.2023022
Funds:  The project was supported by the Major Program Science and Technology Foundation of Shanxi Province (20201102006) and Chinese Academy of Sciences Strategic Pilot Project, China (XDA29050100).
  • Received Date: 2022-09-27
  • Accepted Date: 2022-11-22
  • Rev Recd Date: 2022-11-09
  • Available Online: 2023-03-24
  • Publish Date: 2023-07-01
  • The clean conversion of biomass gasification tar is one of the bottlenecks affecting the large-scale application of biomass gasification. Non-catalytic reforming of raw gas can convert the tar components to CO and H2, eliminating the tar while increasing the syngas yield. This paper investigated the kinetic behavior of high-temperature non-catalytic reforming of biomass raw gas on the basis of thermodynamic calculations. The reforming temperature and O2/crude syngas (O/G) ratio are the key factors affecting the reforming process. C2H2 gradually accumulated at the beginning of the reaction as an intermediate product of the conversion of CH4, C2H4 and C6H6. Subsequently, C2H2 converted to CO, ·CH2, ·CH3, and ·C2H3 under the attack of ·O, ·OH, and HCO·. Increasing the reforming temperature can significantly reduce the time required for complete tar conversion. At a reforming temperature of 1300 ℃, O/G ratio 0.16 and a residence time of 1.5 s, the dry base content of the syngas was 81.07% and the conversion of the tar reached 99.60%.
  • loading
  • [1]
    BASU P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory[M]. 2nd ed. London: Academic press, 2018: 47-86.
    [2]
    赵小燕, 汤文, 曹景沛, 任杰. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报,2022,50(12):1547−1563.

    ZHAO Xiao-yan, TANFG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. J Fuel Chem Technol,2022,50(12):1547−1563.
    [3]
    苏德仁, 黄艳琴, 周肇秋, 阴秀丽, 吴创之, 马隆龙. 两段式固定床富氧-水蒸气气化实验研究[J]. 燃料化学学报,2011,39(8):595−599.

    SU De-ren, HUANG Yan-qin, ZHOU Zhao-qiu, YIN Xiu-li, WU Chuang-zhi, MA Long-long. Experimental study on biomass steam-oxygen enriched air gasification in a two-stage fixed bed gasifier[J]. J Fuel Chem Technol,2011,39(8):595−599.
    [4]
    SRINIVAS S, FIELD R P, HERZOG H J. Modeling tar handling options in biomass gasification[J]. Energy Fuels,2013,27(6):2859−2873. doi: 10.1021/ef400388u
    [5]
    EVANS R J, KNIGHT R A, ONISCHAK M, BABU S. P. Development of biomass gasification to produce substitute fuels[R]. Virginia: Pacific Northwest Lab. , Richland, WA (USA), 1988: 24−29.
    [6]
    王胜, 王树东, 袁中山, 倪长军. 甲烷自热重整制氢热力学分析[J]. 燃料化学学报,2006,34(2):222−225.

    WANG Sheng, WANG Shu-dong, YUAN Zhong-shan, NI Chang-jun. Thermodynamically favorable operating conditions for production of hydrogen by methane autothermal reforming[J]. J Fuel Chem Technol,2006,34(2):222−225.
    [7]
    LUTZ A E, BRADSHAW R W, BROMBERG L, RABINOVICH A. Thermodynamic analysis of hydrogen production by partial oxidation reforming[J]. Int J Hydrogen Energy,2004,29(8):809−816. doi: 10.1016/j.ijhydene.2003.09.015
    [8]
    FREITAS A C D, GUIRARDELLO R. Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis[J]. J Nat Gas Chem,2012,21(5):571−580. doi: 10.1016/S1003-9953(11)60406-4
    [9]
    WEI P, SONG C. Computational Analysis of Energy Aspects of CO2 Reforming and Oxy-CO2 Reforming of Methane at Different Pressures[M]. Washington: ACS Publications, 2002: 316−328.
    [10]
    唐强, 阳绪东, 张力. 甲烷三重整制合成气热力学分析[J]. 热能动力工程,2012,27(3):296−300.

    TANG Qing, YANG Xu-dong, ZHANG Li. Thermodynamic analysis of the preparation of syngas through a triple-reforming of methane[J]. J Eng Therm Energy Power,2012,27(3):296−300.
    [11]
    陈玉民, 赵永椿, 张军营, 郑楚光. 甲烷自热重整制氢的热力学和动力学分析[J]. 燃料化学学报,2011,39(8):633−640.

    CHEN Yu-ming, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Thermodynamic and kinetic analyses for hydrogen production via methane autothermal reforming[J]. J Fuel Chem Technol,2011,39(8):633−640.
    [12]
    SIMEONE M, SALEMME L, ALLOUIS C. Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging[J]. Int J Hydrogen Energy,2008,33(18):4798−4808. doi: 10.1016/j.ijhydene.2008.05.089
    [13]
    WANG W, LI Q, WANG Q, ZHANG J, LIU J. Tar steam reforming during biomass gasification: Kinetic model and reaction pathway[J]. Clean Technol Environ,2022,24(1):39−50. doi: 10.1007/s10098-021-02062-7
    [14]
    SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, SEDOV I V, ARUTYUNOV V S. Non-Catalytic Steam Reforming of C1–C4 Hydrocarbons[J]. Petrol Chem,2021,61(7):762−772. doi: 10.1134/S0965544121070021
    [15]
    SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, SEDOV I V, ARUTYUNOV V S. Utilization of CO2 in non-catalytic dry reforming of C1–C4 hydrocarbons[J]. J CO2 Util,2021,47(101490):1−9.
    [16]
    BAIGMOHAMMADI M, PATEL V, NAGARAJA S, RAMALINGAM A, MARTINEZ S, PANIGRAHY S, CURRAN H J. Comprehensive experimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ratio, and dilution[J]. Energy Fuels,2020,34(7):8808−8823. doi: 10.1021/acs.energyfuels.0c00960
    [17]
    李建伟, 陈冲, 王丹, 姚卫国, 张三莉. 甲烷二氧化碳重整热力学分析[J]. 石油与天然气化工, 2015, 44(3): 60−64.

    LI Jian-wei, CHEN Chong, WANG Dan, YAO Wei-guo, ZHANG San-li, Thermodynamic analysis of methane reforming with carbon dioxide[J]. Chem Eng Oil Gas, 2015, 44(3): 60−64.
    [18]
    张舒冬, 金英杰, 倪向前, 张喜文, 孙万付, 方向晨. 甲烷自热重整制合成气热力学平衡分析[J]. 当代化工, 2009, 38(2): 165−168.

    ZHANG Shu-dong, JIN Ying-jie, NI Xiang-qiang, ZHANG Xi-wen, SUN Wan-fu, FANG Xiang-chen. Thermodynamics Equilibrium analysis for syngas production by methane autothermal reforming[J], Contemp Chem Ind 2009, 38(2): 165−168.
    [19]
    YU L, SONG M, WILLIAMS P T, WEI Y. Optimized reforming of biomass derived gas based on thermodynamic and kinetics analysis with activated carbon fibers supported Ni-Al2O3[J]. Bioenergy Res,2020,13(2):581−590. doi: 10.1007/s12155-019-10087-6
    [20]
    JESS A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel,1996,75(12):1441−1448. doi: 10.1016/0016-2361(96)00136-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (342) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return