Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LI Bo-nan, XING Ya-nan, KANG Lei-lei, LIU Xiao-yan. Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023
Citation: LI Bo-nan, XING Ya-nan, KANG Lei-lei, LIU Xiao-yan. Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023

Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst

doi: 10.19906/j.cnki.JFCT.2023023
Funds:  The project was supported by the National Natural Science Foundation of China (22102180), LiaoNing Revitalization Talents Program (XLYC2007070) and the DNL Cooperation Fund, CAS (DNL202002)
  • Received Date: 2023-01-30
  • Accepted Date: 2023-03-10
  • Rev Recd Date: 2023-03-10
  • Available Online: 2023-04-06
  • Publish Date: 2023-10-10
  • In this study, the PtZn/β-x catalysts (x refers to SiO2/Al2O3 mole ratio) were synthesized by co-impregnation method and the effect of Si/Al ratio of the β zeolite on propane non-hydrogen dehydrogenation was explored. A series of characterization such as XRD, BET, HAADF-STEM, NH3-TPD, C3H6-TPD were applied to investigate the phase structure, surface properties of catalysts, and their effects on the reaction performances. The results showed that, with the increase of Si/Al ratio, the catalytic stability would be enhanced following the order of PtZn/DeAl-β > PtZn/β-40 > PtZn/β-30 > PtZn/β-25, while the number of strong acid sites of the catalyst (PtZn/β-30 > PtZn/β-40 > PtZn/β-25 > PtZn/DeAl-β) was affected by the Si/Al ratio to some extent, which was opposite to the order of the propylene selectivity. Therefore, the control of the Si/Al ratio of zeolite is very important for optimizing the properties of the catalysts for propane dehydrogenation reaction. The catalysts with few strong acid sites, weak adsorption of propylene and large specific surface area are contributed to higher propane conversion, propylene selectivity and catalytic stability.
  • loading
  • [1]
    LIU Y L, ADAM T, DANG Y L, ANNE M, STEVEN L S, PRASHANT D. Roles of enhancement of C-H activation and diminution of C-O formation within M1-phase pores in propane selective oxidation[J]. ChemCatChem,2020,13(3):882−899.
    [2]
    ZHANG H C, LI C S, LU Q, CHENG M J, WILLIAM A G. Selective activation of propane using intermediates generated during water oxidation[J]. J Am Chem Soc,2021,143(10):3967−3974. doi: 10.1021/jacs.1c00377
    [3]
    HU Y Q, ZHAO F Y, WEI F, JIN Y. Ammoxidation of propylene to acrylonitrile in a bench-scale circulating fluidized bed reactor[J]. Chem Eng Process,2007,46(10):918−923. doi: 10.1016/j.cep.2007.05.009
    [4]
    XI Z W, ZHOU N, SUN Y, LI K L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science,2001,292(5519):1139−1141. doi: 10.1126/science.292.5519.1139
    [5]
    LEI Y, MEHMOOD F, LEE S, GREELEY J, LEE B, SEIFERT S, WINANS R E, ELAM J W, MEYER R J, REDFERN P C, TESCHNER D, SCHLOGL R, PELLIN M J, CURTISS L A, VAJDA S. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science,2010,328(5975):224−228. doi: 10.1126/science.1185200
    [6]
    MATTEO M, MARIANNA G, SIPPAKORN W, BERT M W. Propane to olefins tandem catalysis: A selective route towards light olefins production[J]. Chem Soc Rev,2021,50(20):11503−11529. doi: 10.1039/D1CS00357G
    [7]
    ALI H M, RAWAN A, JAMES W, VALENTINA O I, SULJO L. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit[J]. Science,2021,373(6551):217−222. doi: 10.1126/science.abg7894
    [8]
    STEPHANIE S, MAARTEN K S, VLADIMIR V G, EVGENIY A R, STEPHANIE S, MARIE F R, GUY B M. The positive role of hydrogen on the dehydrogenation of propane on Pt (111)[J]. ACS Catal,2017,7:7495−7508. doi: 10.1021/acscatal.7b01584
    [9]
    FENG B H, WEI Y C, SONG W Y, XU C M. A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction[J]. Pet Sci,2022,19(2):819−838. doi: 10.1016/j.petsci.2021.09.015
    [10]
    SAJJAD R, CHEN L W, ANTONIO M, SIBUDJING K, ARMANDO B. Enhanced selectivity and stability of Pt-Ge/Al2O3 catalysts by Ca promotion in propane dehydrogenation[J]. Chem Eng J,2021,405:1−10.
    [11]
    WU X P, ZHANG Q, CHEN L G, LIU Q Y, ZHANG X H, ZHANG Q, MA L L, WANG C G. Enhanced catalytic performance of PtSn catalysts for propane dehydrogenation by a Zn-modified Mg(Al)O support[J]. Fuel Process Technol,2020,198:1−9.
    [12]
    余长林, 徐恒泳, 陈喜蓉, 葛庆杰, 李文钊. PtZn-Sn/SBA-15合成、表征及对丙烷催化脱氢性能[J]. 燃料化学学报,2010,38(3):308−312. doi: 10.1016/S1872-5813(10)60036-9

    YU Chang-lin, XU Heng-yong, CHEN Xi-rong, GE Qing-jie, LI Wen-zhao. Preparation, characterization and catalytic performance of PtZn-Sn/SBA-15 catalyst for propane dehydrogenation[J]. J Fuel Chem Technol,2010,38(3):308−312. doi: 10.1016/S1872-5813(10)60036-9
    [13]
    ZHOU H L, GONG J J, XU B L, DENG S C, DING Y H, YU L, FAN Y N. PtSnNa/SUZ-4: An efficient catalyst for propane dehydrogenation[J]. Chin J Catal,2017,38(3):529−536. doi: 10.1016/S1872-2067(17)62750-5
    [14]
    SUN Q M, WANG N, FAN Q Y, ZENG L, ALVARO M, MIAO S, YANG R O, JIANG Z, ZHOU W, ZHANG J C, ZHANG T J, XU J, ZHANG P, CHENG J, YANG D C, JIA R, LI L, ZHANG Q H, WANG Y, OSAMU T, YU J H. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angew Chem Int Ed,2020,59(44):19450−19459. doi: 10.1002/anie.202003349
    [15]
    QI L, MELIKE B, ZHANG Y F, ALICIA L, LIU L M, LI J W, CHEN Y Z, ADAM S H, SIMON R B, HAN Y, BRUCE C G, ALEXIS T B. Propane dehydrogenation catalyzed by isolated pt atoms in identical with ≡SiOZn-OH nests in dealuminated zeolite beta[J]. J Am Chem Soc,2021,143(50):21364−21378. doi: 10.1021/jacs.1c10261
    [16]
    薛琳, 刘红梅, 刘东兵, 张明森. 丙烷脱氢 Pt 催化剂稳定性研究进展[J]. 石油化工,2019,48(7):731−735.

    XUE Lin, LIU Hong-mei, LIU Dong-bing, ZHANG Ming-sen. Research progress in the stability of Pt-based catalysts for propane dehydrogenation[J]. Pet Technol,2019,48(7):731−735.
    [17]
    SHI L, DENG G M, LI W G, MIAO S, WANG Q N, ZHANG W P, LU A H. Al2O3 nanosheets rich in pentacoordinate Al3 + ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angew Chem Int Ed,2015,54(47):13994−13998. doi: 10.1002/anie.201507119
    [18]
    ZHU X Y, WANG T H, XU Z K, YUE Y Y, LIN M G, ZHU H B. Pt-Sn clusters anchored at Alpenta3 + sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation[J]. J Energy Chem,2022,65:293−301. doi: 10.1016/j.jechem.2021.06.002
    [19]
    YUKI N, XING F L, HYUNGWON H, KEN-ICHI S, SHINYA F. Doubly decorated platinum-gallium intermetallics as stable catalysts for propane dehydrogenation[J]. Angew Chem Int Ed,2021,60(36):19715−19719. doi: 10.1002/anie.202107210
    [20]
    CHEN S, ZHAO Z J, MU R T, CHANG X, LUO J, STEPHEN C P, A JEREMY K, SUN G D, PEI C L, JEFFREY T M, ZHOU X H, EVGENY V, YANG Y, GONG J L. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts[J]. Chem,2021,7(2):387−405. doi: 10.1016/j.chempr.2020.10.008
    [21]
    XU Z K, YUE Y Y, BAO X J, XIE Z L, ZHU H B. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catal,2020,10:818−828. doi: 10.1021/acscatal.9b03527
    [22]
    ZHANG B F, LI G Z, ZHAI Z W, CHEN D L, TIAN Y J, YANG R O, WANG L, ZHANG X W, LIU G Z. PtZn intermetallic nanoalloy encapsulated in silicalite‐1 for propane dehydrogenation[J]. AIChE J,2021,67(7):1−12.
    [23]
    TREACY M M NEWSAM J, J M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth[J]. Nature,1988,332(17):249−251.
    [24]
    WEI S, DAI H, LONG J P, LIN H Q, GU J K, ZONG X P, YANG D, TANG Y, YANG Y H, DAI Y H. Nonoxidative propane dehydrogenation by isolated Co2 + in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption[J]. Chem Eng J, 2022.
    [25]
    PHUOC H H, JUNGWON W, ROJIN F I, MUHAMMAD A S, DEREK C, LOUISE O. The effect of Si/Al ratio on the oxidation and sulfur resistance of beta zeolite-supported Pt and Pd as diesel oxidation catalysts[J]. ACS Eng Au,2021,2(1):27−45.
    [26]
    FAN X Q, LI J M, ZHAO Z, WEI Y C, LIU J, DUAN A J, JIANG G Y. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis[J]. Catal Sci Technol,2015,5:339−350. doi: 10.1039/C4CY00951G
    [27]
    吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展,2022,41(8):4192−4203.

    WU Yu-shuai, YOU Qing, DONG Xu-jie, ZHU Zi-qi, WANG Xu, CHEN Hui-yong, MA Xiao-xun. Synthesis of heteroatom-substituted beta zeolites for catalytic epoxidation of cyclic olefins[J]. Chem Ind Eng Prog,2022,41(8):4192−4203.
    [28]
    HO L W, HWANG C P, LEE J F, WANG I, YEH C T. Reduction of platinum dispersed on dealuminated beta zeolite[J]. J Mol Catal A-Chem,1998,136:293−299. doi: 10.1016/S1381-1169(98)00081-8
    [29]
    CHEN C, SUN M L, HU Z P, REN J T, ZHANG S M, YUAN Z Y. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene[J]. Catal Sci Technol,2019,9(8):1979−1988. doi: 10.1039/C9CY00237E
    [30]
    WANG H Z, SUN L L, SUI Z J, ZHU Y A, YE G H, CHEN D, ZHOU X G, YUAN W K. Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation[J]. Ind Eng Chem Res,2018,57:8647−8654. doi: 10.1021/acs.iecr.8b01313
    [31]
    ZHANG Y W, ZHOU Y M, LIU H, WANG Y, XU Y, WU P C. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Appl Catal A: Gen,2007,333(2):202−210. doi: 10.1016/j.apcata.2007.07.049
    [32]
    CHEN S, CHANG X, SUN G D, ZHANG T T, XU Y Y, WANG Y, PEI C L, GONG J L. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies[J]. Chem Soc Rev,2021,50:3315−3354. doi: 10.1039/D0CS00814A
    [33]
    ZHANG Y W, ZHOU Y M, HUANG L, ZHOU S J, SHENG X L, WANG Q L, ZHANG C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chem Eng J,2015,270:352−361. doi: 10.1016/j.cej.2015.01.008
    [34]
    YU J F, WANG R, REN S Y, SUN X Y, CHEN C L, GE Q J, FANG W, ZHANG J, XU H Y, SU D S. The unique role of CaO in stabilizing the Pt/Al2O3 catalyst for the dehydrogenation of cyclohexane[J]. ChemCatChem,2012,4:1376−1381. doi: 10.1002/cctc.201200067
    [35]
    LIU L C, MIGUEL L H, CHRISTIAN W L, SERGIO R B, PATRICIA C, RAMON M, LAURA S, AARON S, PEDRO S, JOSE J C, AVELINO C. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nat Catal,2020,3:628−638. doi: 10.1038/s41929-020-0472-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (253) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return