Volume 51 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
HU Feng-qun, QIU Ming-yue, YI Qun, ZHANG Ding, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, DUAN Xiao-chuan. Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028
Citation: HU Feng-qun, QIU Ming-yue, YI Qun, ZHANG Ding, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, DUAN Xiao-chuan. Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028

Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure

doi: 10.19906/j.cnki.JFCT.2023028
Funds:  The project was supported by the National Natural Science Foundation of China (22272125), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021021), the Knowledge Innovation Program of Wuhan -Basic Research (2022020801010354) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SXTD015)
  • Received Date: 2023-01-17
  • Accepted Date: 2023-04-03
  • Rev Recd Date: 2023-03-29
  • Available Online: 2023-04-13
  • Publish Date: 2023-11-13
  • A flexible polymer (DP) was prepared by in-situ covalent assembly of dual-amino-functionalized ionic liquids and terephthalaldehyde. A core-shell composite (MIL-101@DP) was constructed by coating DP on the surface of metal-organic frame material MIL-101 (Cr) by post-synthesis modification, and was applied to catalyze the cycloaddition reaction of CO2 and epichlorohydrin (ECH). MIL-101@DP retains the advantage of high specific surface area and high porosity of MIL-101 (Cr), and combines the nucleophilic site Cl and Lewis acidic site Cr3 + . Under the synergistic interaction of Lewis acid sites and Lewis base sites, MIL-101@DP could efficiently catalyze activity the conversion of CO2 and ECH reaction (ECH conversion rate can reach 99%) at atmospheric pressure, 80 ℃, 24 h and without cocatalyst. The activity did not decrease significantly after four cycles.
  • loading
  • [1]
    KURUPPATHPARAMBIL R R, JOSE T, BABU R, HWANG G Y, KATHALIKKATTIL A C, KIM D W, PARK D W. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates[J]. Appl Catal B: Environ,2016,182:562−569. doi: 10.1016/j.apcatb.2015.10.005
    [2]
    ]WU Y, SONG X, XU S, CHEN Y, ODERINDE O, GAO L, WEI R, XIAO G. Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn[J]. Dalton Trans,2020,49(2):312−321. doi: 10.1039/C9DT04027G
    [3]
    LIU M, WANG X, JIANG Y, SUN J, ARAI M. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: Current state-of-the art of catalyst development and reaction analysis[J]. Catal Rev,2018,61(2):214−269.
    [4]
    ZHANG Z, FAN F, XING H, YANG Q, BAO Z, REN Q. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst[J]. ACS Sustainable Chem Eng,2017,5(4):2841−2846. doi: 10.1021/acssuschemeng.7b00513
    [5]
    HAZRA CHOWDHURY I, HAZRA CHOWDHURY A, SARKAR P, ISLAM S M. Chemical fixation of carbon dioxide by heterogeneous porous catalysts[J]. ChemNanoMat,2021,7(6):580−591. doi: 10.1002/cnma.202100074
    [6]
    BAO C, JIANG Y, ZHAO L, LI D, XU P, SUN J. Aminoethylimidazole ionic liquid-grafted MIL-101-NH2 heterogeneous catalyst for the conversion of CO2 and epoxide without solvent and cocatalyst[J]. New J Chem,2021,45(31):13893−13901. doi: 10.1039/D1NJ02590B
    [7]
    LI Z J, SUN J F, XU Q Q, YIN J Z. Homogeneous and heterogeneous ionic liquid system: Promising “ideal catalysts” for the fixation of CO2 into cyclic carbonates[J]. ChemCatChem,2021,13(8):1848−1866. doi: 10.1002/cctc.202001572
    [8]
    SINGH DHANKHAR S, UGALE B, NAGARAJA C M. Co-catalyst-free chemical fixation of CO2 into cyclic carbonates by using metal-organic frameworks as efficient heterogeneous catalysts[J]. Chem Asian J,2020,15(16):2403−2427. doi: 10.1002/asia.202000424
    [9]
    SUN Y, JIA X, HUANG H, GUO X, QIAO Z, ZHONG C. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation[J]. J Mater Chem A,2020,8(6):3180−3185. doi: 10.1039/C9TA10409G
    [10]
    BAHADORI M, MARANDI A, TANGESTANINEJAD S, MOGHADAM M, MIRKHANI V, MOHAMMADPOOR BALTORK I. Ionic liquid-decorated MIL-101(Cr) via covalent and coordination bonds for efficient solvent-free CO2 conversion and CO2 capture at low pressure[J]. J Phys Chem C,2020,124(16):8716−8725. doi: 10.1021/acs.jpcc.9b11668
    [11]
    XIANG W, SHEN C, LU Z, CHEN S, LI X, ZOU R, ZHANG Y, LIU C J. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites[J]. Chem Eng Sc,2021,233:116429. doi: 10.1016/j.ces.2020.116429
    [12]
    QU Y, ZHAO Y, LI D, SUN J. Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products[J]. Curr Opin Green Sustain Chem,2022,34:100599. doi: 10.1016/j.cogsc.2022.100599
    [13]
    LIU D, LI G, LIU H. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition[J]. Appl Surf Sc,2018,428:218−225. doi: 10.1016/j.apsusc.2017.09.040
    [14]
    LONG J, DAI W, ZOU M, LI B, ZHANG S, YANG L, MAO J, MAO P, LUO S, LUO X. Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101 (Cr)[J]. Microporous Mesoporous Mater,2021,318:111027. doi: 10.1016/j.micromeso.2021.111027
    [15]
    DAS S, PEREZ RAMIREZ J, GONG J, DEWANGAN N, HIDAJAT K, GATES B C, KAWI S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2020,49(10):2937−3004. doi: 10.1039/C9CS00713J
    [16]
    ZHANG Y, LIU L, XU W G, HAN Z B. MOF@POP core-shell architecture as synergetic catalyst for high-efficient CO2 fixation without cocatalyst under mild conditions[J]. J CO2 Util,2021,46:101463. doi: 10.1016/j.jcou.2021.101463
    [17]
    TSAI C Y, CHEN Y H, LEE S, LIN C H, CHANG C H, DAI W T, LIU W L. Uniform core-shell microspheres of SiO2@MOF for CO2 cycloaddition reactions[J]. Inorg Chem,2022,61(6):2724−2732. doi: 10.1021/acs.inorgchem.1c01570
    [18]
    ZHAO M, BAN Y, YANG W. Assembly of ionic liquid molecule layers on metal-organic framework-808 for CO2 capture[J]. Chem Eng J,2022,439:135650. doi: 10.1016/j.cej.2022.135650
    [19]
    SHI S, WU Y, ZHANG M, ZHANG Z, ODERINDE O, GAO L, XIAO G. Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions[J]. J Mol Liq,2021,339:117278. doi: 10.1016/j.molliq.2021.117278
    [20]
    GUO Z, CAI X, XIE J, WANG X, ZHOU Y, WANG J. Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates[J]. ACS Appl Mater Interfaces,2016,8(20):12812−12821. doi: 10.1021/acsami.6b02461
    [21]
    HONG D Y, HWANG Y K, SERRE C, FéREY G, CHANG J S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis[J]. Adv Funct Mater,2009,19(10):1537−1552. doi: 10.1002/adfm.200801130
    [22]
    OLANIYAN B, SAHA B. Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization[J]. Energies,2020,13(3):521. doi: 10.3390/en13030521
    [23]
    NGUYEN Q T, DO X H, CHO K Y, LEE Y R, BAEK K Y. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions[J]. J CO2 Util,2022,61:102061. doi: 10.1016/j.jcou.2022.102061
    [24]
    CHEN Y, ZHANG C, XIE J, LI H, DAI W, DENG Q, WANG S. Covalent organic frameworks as a sensing platform for water in organic solvent over a broad concentration range[J]. Anal Chem Acta,2020,1109:114−121. doi: 10.1016/j.aca.2020.03.003
    [25]
    JIANG Y, WANG Z, XU P, SUN J. Dicationic ionic liquid @MIL-101 for the cycloaddition of CO2 and epoxides under cocatalyst-free conditions[J]. Cryst Growth Des,2021,21(7):3689−3698. doi: 10.1021/acs.cgd.0c01666
    [26]
    RASTKARI N, AKBARI S, BRAHMAND M B, TAKHVAR A, AHMADKHANIHA R. Synthesis and characterization of tetraethylene pentamine functionalized MIL-101 (Cr) for removal of metals from water[J]. J Environ Health Sci Eng,2021,19(2):1735−1742. doi: 10.1007/s40201-021-00728-4
    [27]
    WANG Y, ZHANG Y, JIANG Z, JIANG G, ZHAO Z, WU Q, LIU Y, XU Q, DUAN A, XU C. Controlled fabrication and enhanced visible–light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure[J]. Appl Catal B: Environ,2016,185:307−314. doi: 10.1016/j.apcatb.2015.12.020
    [28]
    THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure Appl Chem, 2015, 87(9/10): 1051–1069.
    [29]
    ZIMPEL A, PREIß T, RÖDER R, ENGELKE H, INGRISCH M, PELLER M, RÄDLER J O, WAGNER E, BEIN T, LÄCHELT U, WUTTKE S. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers[J]. Chem Mater,2016,28(10):3318−3326. doi: 10.1021/acs.chemmater.6b00180
    [30]
    VYAS V S, VISHWAKARMA M, MOUDRAKOVSKI I, HAASE F, SAVASCI G, OCHSENFELD C, SPATZ J P, LOTSCH B V. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv Mater,2016,28(39):8749−8754. doi: 10.1002/adma.201603006
    [31]
    SOGUKOMEROGULLARI H G, ZIREK A G, AYTAR E, KöSE M, SöNMEZ M. Pd, Ni, Fe and Cu complexes containing a novel SNS-pincer ligand bearing pyridine: Synthesis and catalytic application to form cyclic carbonates[J]. J Mol Struct,2022,1263:133074. doi: 10.1016/j.molstruc.2022.133074
    [32]
    BHIN K M, THARUN J, ROSHAN K R, KIM D W, CHUNG Y, PARK D W. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides[J]. J CO2 Util,2017,17:112−118. doi: 10.1016/j.jcou.2016.12.001
    [33]
    FERREIRA A, FERREIRA C, TEIXEIRA J A, ROCHA F. Temperature and solid properties effects on gas–liquid mass transfer[J]. Chem. Eng. J,2010,162(2):743−752. doi: 10.1016/j.cej.2010.05.064
    [34]
    LIU C, LIU X H, LI B, ZHANG L, MA J G, CHENG P. Salen-Cu(II)@MIL-101 (Cr) as an efficient heterogeneous catalyst for cycloaddition of CO2 to epoxides under mild conditions[J]. J Energy Chem,2017,26(5):821−824. doi: 10.1016/j.jechem.2017.07.022
    [35]
    ZALOMAEVA O V, CHIBIRYAEV A M, KOVALENKO K A, KHOLDEEVA O A, BALZHINIMAEV B S, FEDIN V P. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101[J]. Chin J Catal,2013,298:179−185. doi: 10.1016/j.jcat.2012.11.029
    [36]
    CHEN Y, CHEN C, LI X, FENG N, WANG L, WAN H, GUAN G. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2 with epoxides[J]. J CO2 Util,2022,62:102107. doi: 10.1016/j.jcou.2022.102107
    [37]
    CHEN Y, XU P, ARAI M, SUN J. Cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonates with a mixed catalyst of layered double hydroxide and tetrabutylammonium bromide at ambient temperature[J]. Adv Synth Catal,2019,361(2):335−344. doi: 10.1002/adsc.201801223
    [38]
    JIANG Y, ZHAO Y, LIANG L, ZHANG X, SUN J. Imidazolium-based poly (ionic liquid) s@MIL-101 for CO2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent[J]. New J Chem,2022,46(5):2309−2319. doi: 10.1039/D1NJ05358B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (457) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return