Volume 51 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
SU Jun-chao, LIU Le, HAO Qing-lan, LIU Xing-chen, TENG Bo-tao. Research progress of Fischer-Tropsch synthesis reaction mechanism[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1565-1575. doi: 10.19906/j.cnki.JFCT.2023034
Citation: SU Jun-chao, LIU Le, HAO Qing-lan, LIU Xing-chen, TENG Bo-tao. Research progress of Fischer-Tropsch synthesis reaction mechanism[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1565-1575. doi: 10.19906/j.cnki.JFCT.2023034

Research progress of Fischer-Tropsch synthesis reaction mechanism

doi: 10.19906/j.cnki.JFCT.2023034
Funds:  The project was supported by the National Natural Science Foundation of China (21872125)
  • Received Date: 2023-03-28
  • Accepted Date: 2023-04-23
  • Rev Recd Date: 2023-04-19
  • Available Online: 2023-05-06
  • Publish Date: 2023-11-13
  • Synthesis gas (CO + H2) conversion into clean fuels and chemicals through Fischer-Tropsch Synthesis (FTS) is an important way to clean utilization of coal and ensure China energy security. Investigation of FTS reaction mechanism at the molecular level, including of activation of synthesis gas on catalyst surface, the chain growth via CnHx* and CnHxOy*, as well as the chain termination into alkanes, olefins, alcohols, and acids, is the key to the regulation of FTS products, the rational design and development of high-performance catalysts. It is also a hot and difficult point in catalysis science. To study FTS reaction mechanism, intermediate detection, modeling compound addition, steady-state kinetics based on reaction mechanism, steady-state isotope transient kinetic analysis (SSITKA), first-principles calculations, and reaction networks, etc. have been applied to reveal the mechanism of synthesis gas conversion. This paper systematically summarizes the research results of reaction mechanism over the past century, proposes a reasonable route map for FTS reaction, and gives a prospection of the research on FTS mechanism.
  • loading
  • [1]
    DRY M E, HOOGENDOORN J C. Technology of the Fischer-Tropsch process[J]. Catal Rev,2006,23(1/2):265−278.
    [2]
    DRY M E. Sasol's Fischer-Tropsch experience[J]. Hydrocarb Process,1982,61(8):121−124.
    [3]
    DRY M E. Commercial conversion of carbon monoxide to fuels and chemicals[J]. J Organomet Chem,1989,372(1):117−127. doi: 10.1016/0022-328X(89)87082-2
    [4]
    GEERLINGS J J C, WILSON J H, KRAMER G J, KUIPERS H P C E, HOEK A, HUISMAN H M. Fischer-Tropsch technology-from active site to commercial process[J]. Appl Catal A: Gen,1999,186(1/2):27−40. doi: 10.1016/S0926-860X(99)00162-3
    [5]
    DRY M E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process[J]. Appl Catal A: Gen,1996,138(2):319−344. doi: 10.1016/0926-860X(95)00306-1
    [6]
    DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today,2002,71(3/4):227−241. doi: 10.1016/S0920-5861(01)00453-9
    [7]
    张碧江. 煤基合成液体燃料[M]. 太原: 山西科学技术出版社, 1993.

    ZHANG Bi-jiang. Coal based synthetic liquid fuel[M]. Taiyuan: Shanxi Science and Technology Press, 1993.
    [8]
    相宏伟, 钟炳. 天然气制取液体燃料工艺技术进展[J]. 化学进展,1999,11(4):385−393.

    XIANG Hong-wei, ZHONG Bing. Technological progress in liquid fuel production from natural gas[J]. Prog Chem,1999,11(4):385−393.
    [9]
    彭少逸, 杨文书, 钟炳, 李文怀, 银董红. 钴基催化剂在Fischer-Tropsch合成烃中的研究进展[J]. 化学进展,2001,13(2):118−127.

    PENG Shao-yi, YANG Wen-shu, ZHONG Bing, LI Wen-huai, YIN Dong-hong. Research progress of cobalt based catalysts in Fischer Tropsch synthesis of hydrocarbons[J]. Prog Chem,2001,13(2):118−127.
    [10]
    EILERS J, POSTHUMA S A, SIE S T. The Shell middle distillate synthesis of process (SMDS)[J]. Catal Lett,1990,7:253−269.
    [11]
    吴宝山, 田磊, 白亮, 张志新, 相宏伟, 李永旺. 沉淀铁催化剂在F-T合成中的研究与应用进展[J]. 化学进展,2004,16(2):256−265.

    WU Bao-shan, TIAN Lei, BAI Liang, ZHANG Zhi-xin, XIANG Hong-wei, LI Yong-wang. Research and application progress of precipitated iron catalysts in Fischer Tropsch synthesis[J]. Prog Chem,2004,16(2):256−265.
    [12]
    WANG F, HE S, CHEN H, WANG B, ZHENG L, WEI M, EVANS D G, DUAN X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. J Am Chem Soc,2016,138(19):6298−6305.
    [13]
    JIAO F, LI J, PAN X, XIAO J, LI H, MA H, PAN Y, ZHOU Z, LIM, MIAO S, LI J, ZHU Y, XIAO D, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [14]
    CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
    [15]
    WANG Y, YANG X, XIAO L, QI Y, YANG J, ZHU J, HOMEN A, XIAO W, CHEN D. Descriptor-based microkinetic modeling and catalyst screening for CO hydrogenation[J]. ACS Catal,2021,11(23):14545−14560. doi: 10.1021/acscatal.1c04347
    [16]
    GU T, WANG B, CHEN S, YANG B. Automated generation and analysis of the complex catalytic reaction network of ethanol synthesis from syngas on Rh(111)[J]. ACS Catal,2020,10(11):6346−6355. doi: 10.1021/acscatal.0c00630
    [17]
    LIU Q Y, SHANG C, LIU Z P. In situ active site for CO activation in Fe-catalyzed Fischer-Tropsch synthesis from machine learning[J]. J Am Chem Soc,2021,143(29):11109−11120. doi: 10.1021/jacs.1c04624
    [18]
    XU Y D, HUANG J, XU L, WANG Q. A new supported Fe-MnO catalyst for the production of light olefins from syngas II. Effect of support on the secondary reactions of C2H4[J]. Catal Lett,1994,24(1/2):187−195. doi: 10.1007/BF00807389
    [19]
    WANG H, HE Y, LIU X W, TENG B T, LI Y, WEN X D. Unraveling the detailed interactions between the surface species and nanoparticle catalyst by a temperature-programed desorption spectrum at the molecular level via a multi-scale simulation and modeling experiment[J]. J Phys Chem C,2023,127(11):5299−5307.
    [20]
    MADEY T E, YATES J T, STERN R C. Isotopic mixing in CO chemisorbed on tungsten. A kinetic study[J]. J Chem Phys,1965,42(4):1372−1378. doi: 10.1063/1.1696123
    [21]
    GOODMAN D W, YATES J T. CO isotopic mixing measurements on nickel: Evidence for irreversibility of CO dissociation[J]. J Catal,1983,82(2):255−260. doi: 10.1016/0021-9517(83)90191-4
    [22]
    CANT N W, BELL A T. Studies of carbon monoxide hydrogenation over ruthenium using transient response techniques[J]. J Catal,1982,73(2):257−271. doi: 10.1016/0021-9517(82)90099-9
    [23]
    尹元根. 多相催化剂的研究方法[M]. 北京: 化学工业出版社, 1988.

    YIN Yuan-gen. Research Methods of Heterogeneous Catalysts[M]. Beijing: Chemical Industry Press, 1988.
    [24]
    MCCASH E M. Surface Chemistry[M]. Qford: Oxford University Press, 2001.
    [25]
    FUKUSHIMA T, ARAKAWA H, ICHIKAWA M. In situ high-pressure FT-IR studies on the surface species formed in CO hydrogenation on SiO2-supported Rh-Fe catalysts[J]. J Phys Chem,1985,89(21):4440−4443. doi: 10.1021/j100267a009
    [26]
    THOMPSON S O, TURKEVICH J, IRSA A P. Study of the Fischer-Tropsch reaction using deuterium gas[J]. J Phys Chem,2002,56(2):243−250.
    [27]
    JIAO F, PAN X, GONG K, CHEN Y, LI G, BAO X. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angew Chem Int Ed,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [28]
    ZHANG C, TENG B, YANG Y, TAO Z, HAO Q, WAN H, LI Y. Effect of air-exposure on reduction behavior of a Fe-Mn-Cu-K/SiO2 Fischer-Tropsch synthesis catalyst[J]. J Mol Catal A: Chem,2005,239(12):15−21.
    [29]
    GUO W, YIN J, XU Z, LIU W, PENG Z, WESTSTRATE C J, ZHOU X. Visualization of on-surface ethylene polymerization through ethylene insertion[J]. Science,2022,375(6585):1188−1191. doi: 10.1126/science.abi4407
    [30]
    滕波涛. Fe-Mn催化剂F-T合成动力学研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2005.

    TENG Bo-tao. Kinetic study on F-T synthesis of Fe Mn catalyst[D]. Taiyuan: Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 2005.
    [31]
    HINDERMANN J P, HUTCHINGS G J, KIENNEMANN A. Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation[J]. Catal Rev,1993,35(1):1−127. doi: 10.1080/01614949308013907
    [32]
    BRADY III R C, PETTIT R. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction[J]. J Am Chem Soc,1980,102(19):6181−6182.
    [33]
    BRADY R C, PETTIT R J C I. Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. J Am Chem Soc,2002,103(5):1287−1289.
    [34]
    LOGGENBERG P M, CARLTON L, COPPERTHWAITE R G, HUTCHINGS G J. The interaction of diazomethane and its decomposition products with a polycrystalline iron surface, studied by X-ray photoelectron spectroscopy[J]. Surf Sci Lett,1987,184(1/2):L339−L344.
    [35]
    KAMINSKY M P, WINOGRAD N, GEOFFROY G L, VANNICE M A. Direct SIMS observation of methylidyne, methylene, and methyl intermediates on a nickel(III) methanation catalyst[J]. J Am Chem Soc,2002,108(6):1315−1316.
    [36]
    VAN BARNEVELD W A A, PONEC V. Reactions of CHxCl4−x with hydrogen: Relation to the Fischer-Tropsch synthesis of hydrocarbons[J]. J Catal,1984,88(2):382−387. doi: 10.1016/0021-9517(84)90015-0
    [37]
    VAN DER RIET M, COPPERTHWAITE R G, HUTCHINGS G J. Formation of hydrocarbons from CO + H2 using a cobalt-manganese oxide catalyst. A 13C isotopic study[J]. J Chem Soc, Faraday Trans,1987,83(9):2963−2972. doi: 10.1039/f19878302963
    [38]
    BIANCHI D, TAU L M, BORCAR S, BENNETT C O. Nature of surface species on supported iron during CO/H2 reaction[J]. J Catal,1983,84(2):358−374. doi: 10.1016/0021-9517(83)90008-8
    [39]
    KOBORI Y, YAMASAKI H, NAITO S, ONISHI T, TAMARU K. Mechanistic study of carbon monoxide hydrogenation over ruthenium catalysts[J]. J Chem Soc, Faraday Trans,1982,78(5):1473−1490. doi: 10.1039/f19827801473
    [40]
    DUNCAN T M, REIMER J A, WINSLOW P, BELL A T. The characterization of alkyl intermediates on silica-supported ruthenium with 13C nuclear magnetic resonance spectroscopy[J]. J Catal,1985,95(1):305−308. doi: 10.1016/0021-9517(85)90033-8
    [41]
    KUIPERS E W, SCHEPER C, WILSON J H, VINKENBURG I H, OOSTERBEEK H. Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis[J]. J Catal,1996,158(1):288−300. doi: 10.1006/jcat.1996.0028
    [42]
    BAETZOLD R C, MONNIER J R. Kinetic modeling of hydrocarbon and oxygenate formation[J]. J Phys Chem,1986,90(13):2944−2949. doi: 10.1021/j100404a031
    [43]
    BALAKOS M W, CHUANG S S. Transient response of propionaldehyde formation during CO/H2/C2H4 reaction on Rh/SiO2[J]. J Catal,1995,151(2):253−265.
    [44]
    JORDAN D S, BELL A T. The influence of butene on CO hydrogenation over ruthenium[J]. J Catal,1987,108(1):63−76. doi: 10.1016/0021-9517(87)90156-4
    [45]
    ADESINA A A, HUDGINS R R, SILVESTON P L. Effect of ethene addition during the Fischer-Tropsch reaction[J]. Appl Catal,1990,62(1):295−308. doi: 10.1016/S0166-9834(00)82253-8
    [46]
    DYER P N, PIERANTOZZI R. Catalyst for selective conversion of synthesis gas and method of making the catalyst: US, 4619910[P]. 1986-10-28.
    [47]
    SCHULZ H, CLAEYS M. Reactions of α-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor[J]. Appl Catal A: Gen,1999,186(1/2):71−90. doi: 10.1016/S0926-860X(99)00165-9
    [48]
    JORDAN D S, BELL A T. Influence of ethylene on the hydrogenation of carbon monoxide over ruthenium[J]. J Phys Chem,1986,90(20):4797−4805. doi: 10.1021/j100411a018
    [49]
    JORDAN D S, BELL A T. Secondary reactions of low-molecular weight olefins during Fischer-Tropsch synthesis[J]. ACS Div Fuel Chem Prepr,1986,31(3):1−4.
    [50]
    JORDAN D, BELL A T. The influence of propylene on CO hydrogenation over silica-supported ruthenium[J]. J Catal,1987,107(2):338−350. doi: 10.1016/0021-9517(87)90300-9
    [51]
    滕波涛, 常杰, 王刚, 张成华, 刘颖, 郑洪岩, 杨骏, 张荣乐, 白亮, 相宏伟, 李永旺. 工业Fe-Mn催化剂上基于详细反应机理的F-T合成动力学模型 Ⅱ. 不同校正方法的动力学模型分析[J]. 催化学报,2005,08:701−706.

    TENG Bo-tao, CHANG Jie, WANG Gang, ZHANG Cheng-hau, LIU Ying, ZHENG Hong-yan, YANG Jun, ZHANG Rong-le, BAI Liang, XIANG Hong-wei, LI Yong-wang. A detailed reaction mechanism based kinetic model for F-T synthesis on industrial Fe-Mn catalysts II. Analysis of kinetic models using different calibration methods[J]. J Catal,2005,08:701−706.
    [52]
    BOELEE J H, CüSTERS J M G, VAN DER WIELE K. Influence of reaction conditions on the effect of Co-feeding ethene in the Fischer-Tropsch synthesis on a fused-iron catalyst in the liquid phase[J]. Appl Catal,1989,53(1):1−13. doi: 10.1016/S0166-9834(00)80005-6
    [53]
    BARRAULT J, FORQUY C, PERRICHON V. Hydrogenation of carbon monoxide to light olefins on iron-alumina catalysts[J]. J Mol Catal,1982,17(2/3):195−203. doi: 10.1016/0304-5102(82)85030-X
    [54]
    KUMMER J T, PODGURSKI H H, SPENCER W B, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis. The addition of radioactive alcohol[J]. J Am Chem Soc,1951,73(2):564−569. doi: 10.1021/ja01146a018
    [55]
    HALL W K, KOKES R J, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis. The addition of radioactive methanol, carbon dioxide and gaseous formaldehyde[J]. J Am Chem Soc,1957,79(12):2983−2989. doi: 10.1021/ja01569a001
    [56]
    HALL W K, KOKES R J, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis: The incorporation of radioactive ethylene, propionaldehyde and propanol[J]. J Am Chem Soc,1960,82(5):1027−1037. doi: 10.1021/ja01490a005
    [57]
    PICHLER H, SCHULZ H. Neuere erkenntnisse auf dem gebiet der synthese von kohlenwasserstoffen aus CO und H2[J]. Chem Ing Tech-CIT,1970,42(18):1162−1174. doi: 10.1002/cite.330421808
    [58]
    SCHULZ H, EL DEEN A Z. New concepts and results concerning the mechanism of carbon monoxide hydrogenation[J]. Fuel Process Technol,1977,1(1):31−44. doi: 10.1016/0378-3820(77)90014-5
    [59]
    SCHULZ H, EL DEEN A Z. New concepts and results concerning the mechanism of carbon monoxide hydrogenation[J]. Fuel Process Technol,1977,1(1):45−56. doi: 10.1016/0378-3820(77)90015-7
    [60]
    HUTCHINGS G J, VAN DER RIET M, HUNTER R. CO hydrogenation using cobalt/manganese oxide catalysts. Comments on the mechanism of carbon-carbon bond formation[J]. J Chem Soc, Faraday Trans 1,1989,85(9):2875−2890. doi: 10.1039/f19898502875
    [61]
    BLYHOLDER G, EMMETT P H. Fischer-Tropsch synthesis mechanism studies. II. The addition of radioactive ketene to the synthesis gas[J]. J Phys Chem,1960,64(4):962−965.
    [62]
    BLYHOLDER G, EMMETT P H. Fischer-Tropsch synthesis mechanism studies. II. The addition of radioactive ketene to the synthesis gas[J]. J Phys Chem,1960,64(4):470−472. doi: 10.1021/j100833a023
    [63]
    LOX E S, FROMENT G F. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling[J]. Ind Eng Chem Res,1993,32(1):71−82. doi: 10.1021/ie00013a011
    [64]
    马文平, 李永旺, 赵玉龙, 徐元源, 周敬来. 工业Fe-Cu-K催化剂上费托合成反应动力学(I): 基于机理的动力学模型[J]. 化工学报,1999,50(2):159−166.

    MA Wen-ping, LI Yong-wang, ZHAO Yu-long, XU Yuan-yuan, ZHOU Jing-lai. Kinetics of F-T synthesis reaction on industrial Fe-Cu-K catalyst (I): Mechanism based dynamic model[J]. CIESC J,1999,50(2):159−166.
    [65]
    马文平, 李永旺, 赵玉龙, 周敬来, 钟炳. 工业Fe-Cu-K催化剂上F-T合成反应动力学(II): 模型筛选与参数估值[J]. 化工学报,1999,50(2):167−173.

    MA Wen-ping, LI Yong-wang, ZHAO Yu-long, ZHOU Jing-lai, ZHONG Bing. Kinetics of F-T synthesis reaction on industrial Fe-Cu-K catalyst (II): Model screening and parameter estimation[J]. CIESC J,1999,50(2):167−173.
    [66]
    WANG Y N, MA W P, LU Y J, XU Y Y, XIAONG H W, LI Y W. Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst[J]. Fuel,2003,82(2):195−213. doi: 10.1016/S0016-2361(02)00154-0
    [67]
    YANG J, LIU Y, CHANG J, WANG Y N, BAI Y, XIANG H W, LI Y W. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst[J]. Ind Eng Chem Res,2003,42(21):5066−5090. doi: 10.1021/ie030135o
    [68]
    TENG B T, CHANG J, YANG J, WANG G, ZHANG C H, XU Y Y. XIANG H W, LI Y W. Water gas shift reaction kinetics in Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst[J]. Fuel,2005,84(7/8):917−926. doi: 10.1016/j.fuel.2004.12.007
    [69]
    滕波涛, 常杰, 刘颖, 张成华, 杨骏, 郑洪岩, 张荣乐, 白亮, 相宏伟, 李永旺. 工业Fe-Mn催化剂上基于详细反应机理的F-T合成动力学模型 Ⅰ. 烯烃再吸附动力学研究[J]. 催化学报,2005,26(8):693−700.

    TENG Bo-tao, CHANG Jie, LIU Ying, ZHANG Cheng-hau, YANG Jun, ZHENG Hong-yan, ZHANG Rong-le, BAI Liang, XIANG Hong-wei, LI Yong-wang. A detailed reaction mechanism based kinetic model for F-T synthesis on industrial Fe-Mn catalysts Ⅰ. Kinetic study on olefin Re adsorption[J]. J Catal,2005,26(8):693−700.
    [70]
    TENG B T, CHANG J, ZHANG C H, YANG J, GAO D B, CHANG J, XAING H W, LI Y W. Oxygenate kinetics in Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst[J]. Fuel,2005,84(7/8):791−800. doi: 10.1016/j.fuel.2004.12.008
    [71]
    TENG B T, CHANG J, ZHANG C H, YANG J, GAO D B, CHANG J, XAING H W, LI Y W. A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst[J]. Appl Catal A: Gen,2006,301(1):39−50. doi: 10.1016/j.apcata.2005.11.014
    [72]
    TENG B T, CHANG J, WAN H J, LIU J Q, ZHENG S Z, LIU Y, LIU Y, GUO X H. A corrected comprehensive kinetic model of Fischer-Tropsch synthesis[J]. Chin J Catal,2007,28(8):687−695. doi: 10.1016/S1872-2067(07)60060-6
    [73]
    VAN DIJK H A. The Fischer-Tropsch synthesis: A Mechanistic Study Using Transient Isotopic Tracing[M]. Eindhoven: Technische Universiteit Eindhoven, 2001.
    [74]
    YANG J, QI Y, ZHU J, ZHU Y A, CHEN D, HOLMEN A. Reaction mechanism of CO activation and methane formation on Co Fischer-Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling[J]. J Catal,2013,308:37−49. doi: 10.1016/j.jcat.2013.05.018
    [75]
    CHEN W, FILOT I A, PESTMAN R, HENSEN E J. Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis[J]. ACS Catal,2017,7(12):8061−8071. doi: 10.1021/acscatal.7b02758
    [76]
    CHEN W, PESTMAN R, ZIJLSTRA B, FILOT I A. Mechanism of cobalt-catalyzed CO hydrogenation: 1. Methanation[J]. ACS Catal,2017,7(12):8050−8060. doi: 10.1021/acscatal.7b02757
    [77]
    VASILIADES M A, GOVENDER N S, GOVENDER A, CROUS R, MOODLEY D, BOTHA T. The effect of H2 pressure on the carbon path of methanation reaction on Co/γ-Al2O3: Transient isotopic and operando methodology studies[J]. ACS Catal,2022,12(24):15110−15129. doi: 10.1021/acscatal.2c04269
    [78]
    VAN BELLEGHEM J, YANG J, JANSSENS P, POISSONNIER J, CHEN D, MARIN G B, THYBAUT J W. Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis[J]. J Ind Eng Chem,2022,105:191−209. doi: 10.1016/j.jiec.2021.09.017
    [79]
    LORITO D, LI H, TRAVERT A, MAUGE F, MEUNIER F C, SCHUURMAN Y, MIRODATOS C. Understanding deactivation processes during bio-syngas methanation: DRIFTS and SSITKA experiments and kinetic modeling over Ni/Al2O3 catalysts[J]. Catal Today,2018,299:172−182. doi: 10.1016/j.cattod.2017.06.041
    [80]
    GAO J, MO X, GOODWIN J G. Relationships between oxygenate and hydrocarbon formation during CO hydrogenation on Rh/SiO2: Use of multiproduct SSITKA[J]. J Catal,2010,275(2):211−217. doi: 10.1016/j.jcat.2010.07.029
    [81]
    CAO D B, ZHANG F Q, LI Y W, WANG J, JIAO H. Density functional theory study of hydrogen adsorption on Fe5C2(001), Fe5C2(110), and Fe5C2(100)[J]. J Phys Chem B,2005,109(2):833−844. doi: 10.1021/jp046239+
    [82]
    CAO D B, ZHANG F Q, LI Y W, JIAO H. Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces[J]. J Phys Chem B,2004,108(26):9094−9104. doi: 10.1021/jp049470w
    [83]
    PAPOIAN G, NØRSKOV J K, HOFFMANN R. A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface[J]. J Am Chem Soc,2000,122(17):4129−4144. doi: 10.1021/ja993483j
    [84]
    KUA J, GODDARD W A. Chemisorption of organics on platinum. 2. Chemisorption of C2Hx and CHx on Pt(111)[J]. J Phys Chem B,1998,102(47):9492−9500. doi: 10.1021/jp982527s
    [85]
    WATWE R M, CORTRIGHT R D, NØRSKOV J K, DUMESIC J A. Theoretical studies of stability and reactivity of C2 hydrocarbon species on Pt clusters, Pt(111), and Pt(211)[J]. J Phys Chem B,2000,104(10):2299−2310. doi: 10.1021/jp993202u
    [86]
    PALLASSANA V, NEUROCK M, LUSVARDI V S, LEROU J J, KRAGTEN D D, VAN SANTEN R A. A density functional theory analysis of the reaction pathways and intermediates for ethylene dehydrogenation over Pd(111)[J]. J Phys Chem B,2002,106(7):1656−1669. doi: 10.1021/jp012143t
    [87]
    CIOBICA I M, VAN SANTEN R A. A DFT study of CHx chemisorption and transition states for C-H activation on the Ru(1120) surface[J]. J Phys Chem B,2002,106(24):6200−6205. doi: 10.1021/jp013210m
    [88]
    CIOBÎCĂ I M, FRECHARD F, JANSEN A P J, VAN SANTEN R A. From DFT calculations to dynamic monte carlo simulations. The reactivity of CHx on the Ru(0001) surface[J]. Stud Surf Sci Catal,2001,133:221−228.
    [89]
    CIOBÎCĂ I M, KRAMER G J, GE Q, NEUROCK M, VAN SANTEN R A. Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001)[J]. J Catal,2002,212(2):136−144. doi: 10.1006/jcat.2002.3742
    [90]
    LIU Z P, HU P. A new insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc,2002,124(39):11568−11569. doi: 10.1021/ja012759w
    [91]
    PHAM T H, DUAN X, QIAN G, ZHOU X, CHEN D. CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2 (510): Direct versus hydrogen-assisted CO dissociation[J]. J Phys Chem C,2014,118(19):10170−10176. doi: 10.1021/jp502225r
    [92]
    PHAM T H, QI Y, YANG J, DUAN X, QIAN G, ZHOU X, CHEN D, YUAN W. Insights into hägg iron-carbide-catalyzed Fischer-Tropsch synthesis: Suppression of CH4 formation and enhancement of C-C coupling on χ-Fe5C2 (510)[J]. ACS Catal,2015,5(4):2203−2208. doi: 10.1021/cs501668g
    [93]
    CHEN B, WANG D, DUAN X, LIU A, QIAN G, YAUN W, HOLMEN A, ZHOU X G, CHEN D. Charge-tuned CO activation over a χ-Fe5C2 Fischer-Tropsch catalyst[J]. ACS Catal,2018,8(4):2709−2714. doi: 10.1021/acscatal.7b04370
    [94]
    WEN X, YANG Y, XIANG H, JIAOH, LI Y. The design principle of iron-based catalysts for fischer-tropsch synthesis: from theory to practice[J]. Sci Sin Chim,2017,47(11):1298−1311. doi: 10.1360/N032017-00111
    [95]
    ZHAO P, CAO Z, LIU X, REN P J, CAO D B, XIANG H W, JIAO H J. Morphology and reactivity evolution of HCP and FCC Ru nanoparticles under CO atmosphere[J]. ACS Catal,2019,9(4):2768−2776. doi: 10.1021/acscatal.8b05074
    [96]
    YIN J, LIU X, LIU X W, WANG H, WANG S, ZHANG W, ZHOU X, TENG B T, YANG Y, LI Y W, CHAO Z, WEN X D. Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle[J]. Appl Catal B: Environ,2020,278:119308. doi: 10.1016/j.apcatb.2020.119308
    [97]
    ULISSI Z W, MEDFORD A J, BLIGAARD T, NØRSKOV J K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations[J]. Nat Commun,2017,8(1):14621. doi: 10.1038/ncomms14621
    [98]
    YANG N, MEDFORD A J, LIU X, STUDT F, BLIGAARD T, BENT S F, NØRSKOV J K. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2 + oxygenate production[J]. J Am Chem Soc,2016,138(11):3705−3714. doi: 10.1021/jacs.5b12087
    [99]
    LOVRIC M, MOLERO J M, KERN R. PySpark and RDKit: Moving towards big data in cheminformatics[J]. Mol Inform,2019,38(6):1800082. doi: 10.1002/minf.201800082
    [100]
    WANG B, CHEN S, ZHANG J, LI S, YANG B. Propagating DFT uncertainty to mechanism determination, degree of rate control, and coverage analysis: The kinetics of dry reforming of methane[J]. J Phys Chem C,2019,123(50):30389−30397. doi: 10.1021/acs.jpcc.9b08755
    [101]
    ZHANG X J, SHANG C, LIU Z P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu[J]. J Chem Phys,2017,147(15):152706. doi: 10.1063/1.4989540
    [102]
    MCGIBBON M, MONEY-KYRLE S, BLAY V, HOUSTON D R. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation[J]. J Adv Res,2023,46:135−147.
    [103]
    FISCHER F, TROPSCH H. Die Erdölsynthese bei gewöhnlichem Druck aus den Vergasungsprodukten der Kohlen[J]. Brennst Chem,1926,7:97−104.
    [104]
    TURNER M L, MARSIH N, MANN B E, QUYOUM R, LONG H C, MAITLIS P M. Investigations by 13C NMR spectroscopy of ethene-initiated catalytic CO hydrogenation[J]. J Am Chem Soc,2002,124(35):10456−10472. doi: 10.1021/ja026280v
    [105]
    SMITH K J, ANDERSON R B. A chain growth scheme for the higher alcohols synthesis[J]. J Catal,1984,85(2):428−436. doi: 10.1016/0021-9517(84)90232-X
    [106]
    EIDUS Y T. The mechanism of the Fischer-Tropsch reaction and the initiated hydropolymerisation of alkenes, from radiochemical and kinetic data[J]. Russian Chemical Reviews,1967,36(5):338−351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2495) PDF downloads(290) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return