Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035
Citation: GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035

Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation

doi: 10.19906/j.cnki.JFCT.2023035
Funds:  The project was supported by the National Natural Science Foundation of China (22172185,21773285)
  • Received Date: 2023-04-14
  • Accepted Date: 2023-04-20
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-05-06
  • Publish Date: 2024-01-09
  • Photocatalytic mineralization of recalcitrant contaminants such as phenol requires hydroxyl radicals (·OH) for ring-opening reactions. Here, we weaken the adsorption of oxygen species on TiO2 surface by Al doping, which can effectively promote the photoinduced ·OH generation. Besides, Al doping can downshift the conduction band of TiO2. The resulted potential barrier lowering can promote semiconductor-cocatalyst interfacial electron transfer for the reduction half-reaction. Due to the strong correlation between positive and negative charges, the rapid transfer of electrons in the reduction half-reaction can also increase the concentration of holes in the semiconductor and promote the generation of ·OH. By immobilizing the photocatalyst on the light-incident inner wall of the reactor, it can avoid the competitive light absorption by the contaminant. By these virtues, efficient photocatalytic mineralization of low-concentration phenol in wastewater can be realized.
  • loading
  • [1]
    JIA K, WEI X H, XU Y, et al. Asymmetric potential barrier lowering promotes photocatalytic nonoxidative dehydrogenation of anhydrous methanol[J]. Appl Catal A: Gen,2023,650:119009−119013. doi: 10.1016/j.apcata.2022.119009
    [2]
    TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature,2020,581(7809):411−414. doi: 10.1038/s41586-020-2278-9
    [3]
    ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation[J]. J Mol Liq,2021,324:114696−114706. doi: 10.1016/j.molliq.2020.114696
    [4]
    DE S FURTADO R X, SABATINI C A, ZAIAT M, et al. Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM)[J]. J Water Process Eng, 2021, 41: 101986–101993.
    [5]
    PASINI S M, VALÉRIO A, YIN G L, et al. An overview on nanostructured TiO2-containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment[J]. J Water Process Eng, 2021, 40: 101827–101842.
    [6]
    彭书传, 王诗生, 陈天虎, 等. 负载型TiO2光催化氧化法处理硝基苯酚工业废水[J]. 工业水处理,2003,23(11):34−36.

    PENG Shuchuan, WANG Shisheng, CHEN Tianhu, et al. Treatment of nitrophenol wastewater by heterogeneous photocatalytic oxidation process[J]. Ind Water Treat,2003,23(11):34−36.
    [7]
    王九思, 赵红花, 宋光顺, 等. 负载型TiO2固定相光催化降解含酚废水的试验研究[J]. 环境污染治理技术与设备[J],2004,5(10):26−29.

    WANG Jiu-si, ZHAO Hong-hua, SONG Guang-shun, MA Yan-fei. Experimental research on photocatalytic degradation phenolic wastewater by immobilized TiO2 fixed phase[J]. Tech Equip Environ Pollut Control,2004,5(10):26−29.
    [8]
    CHANDANA L, SUBRAHMANYAM C. Degradation and mineralization of aqueous phenol by an atmospheric pressure catalytic plasma reactor[J]. J Environ Chem Eng,2018,6(3):3780−3786. doi: 10.1016/j.jece.2016.11.014
    [9]
    LUO T, WANG Z J, WEI X H, et al. Surface enrichment promotes the decomposition of benzene from air[J]. Catal Sci Technol,2022,12(7):2340−2345. doi: 10.1039/D1CY02296B
    [10]
    XIANG H K, WANG Z J, CHEN J Z. Revealing and facilitating the rate-determining step for efficient sunlight-driven photocatalysis[J]. J Phys Chem Lett,2021,12(32):7665−7670. doi: 10.1021/acs.jpclett.1c02101
    [11]
    XIANG H K, WANG Z J, CHEN J Z. Revealing the role of elementary doping in photocatalytic phenol mineralization[J]. Chin J Struc Chem,2022,41(9):2209069−2209073.
    [12]
    SARENTUYA, BAI H D, AMURISHANA. Synthesis of Bi2S3-TiO2 nanocomposite and its electrochemical and enhanced photocatalytic properties for phenol degradation[J]. Int J Electrochem Sci,2023,18(4):100071−100079. doi: 10.1016/j.ijoes.2023.100071
    [13]
    HASANI H, SABAHI J, GHAFRI B, et al. Effect of water quality in photocatalytic degradation of phenol using zinc oxide nanorods under visible light irradiation[J]. J Water Process Eng,2022,49:103121−103133. doi: 10.1016/j.jwpe.2022.103121
    [14]
    NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chem Rev,2017,117(17):11302−11336. doi: 10.1021/acs.chemrev.7b00161
    [15]
    TAO H B, FANG L W, CHEN J Z, et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. J Am Chem Soc,2016,138(31):9978−9985. doi: 10.1021/jacs.6b05398
    [16]
    FRIEDMANN D, MENDIVE C, BAHNEMANN D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis[J]. Appl Catal B: Environ, 2010, 99(3/4): 398–406.
    [17]
    HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004
    [18]
    SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chem Rev,2014,114(19):9919−9986. doi: 10.1021/cr5001892
    [19]
    WANG Z J, MEI B B, CHEN J Z. Removing semiconductor–cocatalyst interfacial electron transfer induced bottleneck for efficient photocatalysis: A case study on Pt/CdS photocatalyst[J]. J Catal,2022,408:270−278. doi: 10.1016/j.jcat.2022.03.014
    [20]
    XU Y, WANG Z J, XIANG H K, et al. Revealing the role of electronic doping for developing cocatalyst–free semiconducting photocatalysts[J]. J Phys Chem Lett,2022,13(8):2039−2045. doi: 10.1021/acs.jpclett.2c00193
    [21]
    YANG D L, WANG Z J, CHEN J Z. Revealing the role of surface elementary doping in photocatalysis[J]. Catal Sci Technol,2022,12(11):3634−3638. doi: 10.1039/D2CY00410K
    [22]
    刘诺, 钟志亲, 张桂平, 等. 半导体物理导论[M]. 北京: 科学出版社, 2014: 86–87.

    LIU Nuo, ZHONG Zhiqin, ZHANG Guiping, CHEN Jinju. Introduction to Semiconductor Physics[M]. Beijing: Science Press, 2014: 86–87.
    [23]
    WEI X H, LIU H F, GAO S G, et al. Photocatalyst: to be dispersed or to be immobilized? The crucial role of electron transport in photocatalytic fixed bed reaction[J]. J Phys Chem Lett,2022,13(41):9642−9648. doi: 10.1021/acs.jpclett.2c02581
    [24]
    WU T Z, SUN S N, SONG J J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J]. Nat Catal,2019,2(9):763−772. doi: 10.1038/s41929-019-0325-4
    [25]
    WANG H Y, HUNG S F, CHEN H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J Am Chem Soc,2016,138(1):36−39. doi: 10.1021/jacs.5b10525
    [26]
    HOEX B, HEIL S B S, LANGEREIS E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3[J]. Appl Phys Lett,2006,89(4):042112−042114. doi: 10.1063/1.2240736
    [27]
    KAUSHIK R, SAMAL P K, HALDER A. Degradation of fluoroquinolone-based pollutants and bacterial inactivation by visible-light-active aluminum-doped TiO2 nanoflakes[J]. ACS Appl Nano Mater,2019,2(12):7898−7909. doi: 10.1021/acsanm.9b01913
    [28]
    MURASHKINA A A, MURZIN P D, RUDAKOVA A V, et al. EMELINE A V, BAHNEMANN D W. Influence of the dopant concentration on the photocatalytic activity: Al–doped TiO2[J]. J Phys Chem C,2015,119(44):24695−24703. doi: 10.1021/acs.jpcc.5b06252
    [29]
    FLOYD R A, WATSON J J, WONG P K. Sensitive assay of hydroxyl free-radical formation utilizing high-pressure liquid-chromatography with electrochemical detection of phenol and salicylate hydroxylation products[J]. J Biochem Biophys Methods, 1984, 10(3/4): 221–235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (252) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return