Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
CAO Yihua, ZHANG Xin, YIN Xueli, GAN Yonghao, DAI Xiaoping. K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036
Citation: CAO Yihua, ZHANG Xin, YIN Xueli, GAN Yonghao, DAI Xiaoping. K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036

K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas

doi: 10.19906/j.cnki.JFCT.2023036
Funds:  The project was supported by the National Natural Science Foundation of China (21576288)
  • Received Date: 2023-03-20
  • Accepted Date: 2023-04-18
  • Rev Recd Date: 2023-04-18
  • Available Online: 2023-05-06
  • Publish Date: 2024-01-09
  • Improving the C2+ alcohols yield is highly desirable for the direct synthesis of higher alcohols from syngas. In this work, a series of highly dispersed K-modified NiMoS catalysts with different K contents on ZnAl-mixed oxide support were prepared by the combination of co-precipitation and impregnation method. And their performance in higher alcohols synthesis (HAS) from syngas was investigated. The results show that the introduction of K can modulate the stacking degree of MoS2 slabs, and improve the interaction between NiSx and NiMoS phases. The as-prepared catalyst is conducive to promote the insertion of CHx and non-dissociative CO in HAS, and effectively suppress the generation of hydrocarbons and CO2. The 0.6KNiMoS/ZnAl catalyst exhibits the most double-layer MoS2 slabs (33.7%) and highly synergetic effects between NiSx and NiMoS to achieve the total alcohols selectivity (69.8%) and space-time yield (78.6 mg/(g·h)) of C2+ alcohols.
  • loading
  • [1]
    SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J]. Chem Soc Rev,2007,36:1514−1528. doi: 10.1039/b414039g
    [2]
    FANG K, LI D, LIN M, et al. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today,2009,147(2):133−138. doi: 10.1016/j.cattod.2009.01.038
    [3]
    DEVARAPALLI M, ATIYEH H K. A review of conversion processes for bioethanol production with a focus on syngas fermentation[J]. Biofuel Res J,2015,2(3):268−280. doi: 10.18331/BRJ2015.2.3.5
    [4]
    LAN E I, LIAO J C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources[J]. Bioresour Technol,2013,135:339−349. doi: 10.1016/j.biortech.2012.09.104
    [5]
    ROSS J R H, KEULEN A N J V, HEGARTY M E S, et al. The catalytic conversion of natural gas to useful products[J]. Catal Today,1996,30:193−199. doi: 10.1016/0920-5861(96)00035-1
    [6]
    WILHELM D J, SIMBECK D R, KARP A D, et al. Syngas production for gas-to-liquids applications: technologies, issues and outlook[J]. Fuel Processing Technol,2001,71:139−148. doi: 10.1016/S0378-3820(01)00140-0
    [7]
    XIE W, ZHOU J, JI L, et al. Targeted design and synthesis of a highly selective Mo-based catalyst for the synthesis of higher alcohols[J]. RSC Adv,2016,6(45):38741−38745. doi: 10.1039/C6RA05332G
    [8]
    LUAN X, YONG J, DAI X, et al. Tungsten-doped molybdenum sulfide with dominant double-layer structure on mixed MgAl oxide for higher alcohol synthesis in CO hydrogenation[J]. Ind Eng Chem Res,2018,57(31):10170−10179.
    [9]
    LUK H T, MONDELLI C, FERRE D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46(5):1358−1426. doi: 10.1039/C6CS00324A
    [10]
    YONG J, LUAN X, DAI X, et al. Tuning the metal-support interaction in supported K-promoted NiMo catalysts for enhanced selectivity and productivity towards higher alcohols in CO hydrogenation[J]. Catal Sci Technol,2017,7(18):4206−4215. doi: 10.1039/C7CY01295K
    [11]
    XIAO K, BAO Z, QI X, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal,2013,34(1):116−129. doi: 10.1016/S1872-2067(11)60496-8
    [12]
    ZAMAN S, SMITH K J. A review of molybdenum catalysts for synthesis gas conversion to alcohols: catalysts, mechanisms and kinetics[J]. Catal Rev,2012,54(1):41−132. doi: 10.1080/01614940.2012.627224
    [13]
    HUANG X, XU X, LUAN X, et al. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction[J]. Nano Energy,2020,68:104332. doi: 10.1016/j.nanoen.2019.104332
    [14]
    LIAKAKOU E T, HERACLEOUS E, TRIANTAFYLLIDIS K S, et al. K-promoted NiMo catalysts supported on activated carbon for the hydrogenation reaction of CO to higher alcohols: effect of support and active metal[J]. Appl Catal B: Environ,2015,165:296−305. doi: 10.1016/j.apcatb.2014.10.027
    [15]
    WANG J, XIE J, HUANG Y, et al. An efficient Ni-Mo-K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols[J]. Appl Catal A: Gen,2013,468:44−51. doi: 10.1016/j.apcata.2013.08.026
    [16]
    MORRILL M R, THAO N T, SHOU H, et al. Origins of unusual alcohol selectivities over mixed MgAl oxide-supported K/MoS2 catalysts for higher alcohol synthesis from syngas[J]. ACS Catal,2013,3(7):1665−1675. doi: 10.1021/cs400147d
    [17]
    TAVASOLI A, KARIMI S, DAVARI M, et al. Enhancement of MoO3-K2O/CNTs nanocatalyst activity and selectivity in higher alcohols synthesis using microemulsion technique[J]. J Ind Eng Chem,2014,20(2):674−681. doi: 10.1016/j.jiec.2013.05.032
    [18]
    MORRILL M R, THAO N T, AGRAWAL P K, et al. Mixed MgAl oxide supported potassium promoted molybdenum sulfide as a selective catalyst for higher alcohol synthesis from syngas[J]. Catal Let,2012,142(7):875−881. doi: 10.1007/s10562-012-0827-z
    [19]
    TOULHOAT H. A perspective on the catalytic hydrogenation of aromatics by Co(Ni)MoS phases[J]. J Catal,2021,403:121−130. doi: 10.1016/j.jcat.2021.01.020
    [20]
    JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100−102. doi: 10.1126/science.1141483
    [21]
    TABORGA CLAURE M, CHAI S-H, DAI S, et al. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide[J]. J Catal,2015,324:88−97. doi: 10.1016/j.jcat.2015.01.015
    [22]
    ZHANG X, LUAN X, DAI X, et al. Enhanced higher alcohol synthesis from CO hydrogenation on Zn-modified MgAl-mixed oxide supported KNiMoS-based catalysts[J]. Ind Eng Chem Res,2020,59(4):1413−1421. doi: 10.1021/acs.iecr.9b04047
    [23]
    HEDRICK S A, CHUANG S S C, PANT A, et al. Activity and selectivity of Group VIII, alkali-promoted Mn-Ni, and Mo-based catalysts for C2+ oxygenate synthesis from the CO hydrogenation and CO/H2/C2H4 reactions.[J]. Catal Today,2000,55:247−257. doi: 10.1016/S0920-5861(99)00245-X
    [24]
    LI D, ZHAO N, QI H, et al. Ultrasonic preparation of Ni modified K2CO3/MoS2 catalyst for higher alcohols synthesis[J]. Catal Commun,2005,6(10):674−678. doi: 10.1016/j.catcom.2005.06.007
    [25]
    DING M, TU J, QIU M, et al. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Appl Energy,2015,138:584−589. doi: 10.1016/j.apenergy.2014.01.010
    [26]
    AQUINO A D D, COBO A J G. Synthesis of higher alcohols with cobalt and copper based model catalysts: effect of the alkaline metals[J]. Catal Today,2001,65:209−216. doi: 10.1016/S0920-5861(00)00575-7
    [27]
    MASIH D, ROHANI S, KONDO J N, et al. Low-temperature methanol dehydration to dimethyl ether over various small-pore zeolites[J]. Appl Catal B: Environ,2017,217:247−255. doi: 10.1016/j.apcatb.2017.05.089
    [28]
    CHOUDARY B M, LAKSHMI KANTAM M, NEERAJA V, et al. Layered double hydroxide fluoride: a novel solid base catalyst for C-C bond formation[J]. Green Chem,2001,3(5):257−260. doi: 10.1039/b107124f
    [29]
    SANTOS V P, VAN DER LINDEN B, CHOJECKI A, et al. Mechanistic insight into the synthesis of higher alcohols from syngas: The role of K promotion on MoS2 catalysts[J]. ACS Catal,2013,3(7):1634−1637. doi: 10.1021/cs4003518
    [30]
    SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels,2008,22:814−839.
    [31]
    TIENTHAO N, HASSANZAHEDINIAKI M, ALAMDARI H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. J Catal,2007,245(2):348−357. doi: 10.1016/j.jcat.2006.10.026
    [32]
    SUáREZ PARíS R, MONTES V, BOUTONNET M, et al. Higher alcohol synthesis over nickel-modified alkali-doped molybdenum sulfide catalysts prepared by conventional coprecipitation and coprecipitation in microemulsions[J]. Catal Today,2015,258:294−303. doi: 10.1016/j.cattod.2014.12.003
    [33]
    ZENG F, XI X, CAO H, et al. Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide[J]. Appl Catal B: Environ,2019,246:232−241. doi: 10.1016/j.apcatb.2019.01.063
    [34]
    CHOW W L, LUO X, QUEK S Q, et al. Evolution of Raman scattering and electronic structure of ultrathin molybdenum disulfide by oxygen chemisorption[J]. Adv Electron Mater,2015,1(1/2):1400037. doi: 10.1002/aelm.201400037
    [35]
    LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Adv Funct Mater,2012,22(7):1385−1390. doi: 10.1002/adfm.201102111
    [36]
    BENOIST L, GONBEAU D, PFISTER-GUILLOUZO G, et al. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films[J]. Thin Solid Films,1995,258:110−114.
    [37]
    LIU C, VIRGINIE M, GRIBOVAL-CONSTANT A, et al. Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation[J]. Catal Today,2016,261:137−145. doi: 10.1016/j.cattod.2015.07.003
    [38]
    QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci,2010,256(11):3413−3417. doi: 10.1016/j.apsusc.2009.12.043
    [39]
    FAN Y, XIAO H, SHI G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal,2011,279(1):27−35. doi: 10.1016/j.jcat.2010.12.014
    [40]
    HARRIS S, CHIANELLI R R. Catalysis by transition metal sulfides: a theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides[J]. J Catal,1986,98:17−31. doi: 10.1016/0021-9517(86)90292-7
    [41]
    GANDUBERT A D, KREBS E, LEGENS C, et al. Optimal promoter edge decoration of CoMoS catalysts: a combined theoretical and experimental study[J]. Catal Today,2008,130(1):149−159. doi: 10.1016/j.cattod.2007.06.041
    [42]
    HAN W, YUAN P, FAN Y, et al. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor[J]. J Mater Chem,2012,22:25340−25353. doi: 10.1039/c2jm34979e
    [43]
    NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, et al. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions[J]. J Catal,2014,312:152−169. doi: 10.1016/j.jcat.2014.01.014
    [44]
    LI D, YANG C, LI W, et al. Ni/ADM: A high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols[J]. Top Catal,2005,32:233−239. doi: 10.1007/s11244-005-2901-x
    [45]
    ANDERSSON R, BOUTONNET M, JÄRÅS S. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas[J]. J Chromatogr A,2012,1247:134−145. doi: 10.1016/j.chroma.2012.05.060
    [46]
    DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149:414−427. doi: 10.1006/jcat.1994.1308
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (298) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return