Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WANG Ji, GUO Hanghao, LU Guangjun, QU Yongping, MA Zhibin. Influence mechanism of Ca-Fe flux on fusibility and crystallization behavior of coal fly ash[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 1-8. doi: 10.19906/j.cnki.JFCT.2023050
Citation: WANG Ji, GUO Hanghao, LU Guangjun, QU Yongping, MA Zhibin. Influence mechanism of Ca-Fe flux on fusibility and crystallization behavior of coal fly ash[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 1-8. doi: 10.19906/j.cnki.JFCT.2023050

Influence mechanism of Ca-Fe flux on fusibility and crystallization behavior of coal fly ash

doi: 10.19906/j.cnki.JFCT.2023050
Funds:  The project was supported by the Shanxi Province Science Foundation for Youths (202203021212135), National Natural Science Foundation of China (22078181), Shanxi Province Key Research and Development Program (202102090301004, 202102090301024 and 202102090301025) and Shanxi Province Graduate Innovation Project (2022Y131).
  • Received Date: 2023-05-18
  • Accepted Date: 2023-06-13
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-06-27
  • Publish Date: 2024-01-09
  • The preparation of high-strength inorganic fibers by coal fly ash is an important method to achieve its high-value utilization. Due to high content of SiO2 and Al2O3 in coal fly ash, it is necessary that Ca-Fe flux should be added to decrease melting temperature of coal fly ash during homogenization of slag and avoid crystallization behavior during preparation of fibers. In this paper, the influence mechanism of Ca-Fe flux on the fusibility and crystallization behavior of coal fly ash under air atmosphere was investigated. The results show that calcium oxide (CaO) and iron oxide (Fe2O3) does not show synergistic fluxing effect on fusibility of coal fly ash under air atmosphere, moreover, the fluxing effect of CaO on fusibility is more obvious than that of Fe2O3. At high temperature, Fe2O3 cannot react with silicon-aluminum components to form low melting point minerals, while CaO is beneficial to transform refractory mullite into anorthite, which greatly reduces the melting point of fly ash. However, excess CaO (>30%) leads to formation of calcium feldspar, which increases melting point of fly ash obviously. During the cooling process, iron precipitates in the form of hematite while calcium precipitates in the form of anorthite, and the crystallization temperature of hematite is lower than that of anorthite. When content of CaO is 32.46%, the melting point of coal fly ash is the lowest, and there is no crystallization during the cooling process. Therefore, CaO is suitable to adjust fusibility and crystallization behavior of coal fly ash during preparation of inorganic fiber.
  • loading
  • [1]
    刘梦茹, 杨亚东, 杨素洁, 等. 粉煤灰资源综合利用现状研究[J]. 化工矿物与加工,2021,50(4):45−48. doi: 10.16283/j.cnki.hgkwyjg.2021.04.010

    LIU Mengru, YANG Yadong, YANG Sujie, et al. Study on status of comprehensive utilization of fly ash[J]. Ind Min Process,2021,50(4):45−48. doi: 10.16283/j.cnki.hgkwyjg.2021.04.010
    [2]
    关于“十四五”大宗固体废弃物综合利用的指导意见[J]. 再生资源与循环经济, 2021, 14(4): 1−3.

    Guiding Opinions on the Comprehensive Utilization of Bulk Solid Waste during the 14th Five Year Plan[J]. Recycl Res, 2021, 14(4): 1−3.
    [3]
    BLISSETT RS, ROWSON NA. A review of the multi-component utilisation of coal fly ash[J]. Fuel,2012,97:1−23. doi: 10.1016/j.fuel.2012.03.024
    [4]
    YAO Z, JI X, SARKER PK, et al. A comprehensive review on the applications of coal fly ash[J]. Earth-Sci Rev,2015,141:105−121. doi: 10.1016/j.earscirev.2014.11.016
    [5]
    ZHANG J, WEN X, CHENG F. Preparation, thermal stability and mechanical properties of inorganic continuous fibers produced from fly ash and magnesium slag[J]. Waste Manag,2021,120:156−163. doi: 10.1016/j.wasman.2020.11.021
    [6]
    MA Z, TIAN X, LIAO H, et al. Improvement of fly ash fusion characteristics by adding metallurgical slag at high temperature for production of continuous fiber[J]. J Clean Prod,2018,171:464−481. doi: 10.1016/j.jclepro.2017.10.031
    [7]
    张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报,2021,35(7):7019−7026. doi: 10.11896/cldb.20060263

    ZHANG Jincai, WANG Zhiying, CHENG Fangqin. Progress on the study of solid waste based inorganic fibers[J]. Mater Rep,2021,35(7):7019−7026. doi: 10.11896/cldb.20060263
    [8]
    WANG S, ZHANG C, CHEN J. Utilization of coal fly ash for the production of glass-ceramics with unique performances: A brief review[J]. J Mater Sci Technol,2014,30(12):1208−1212. doi: 10.1016/j.jmst.2014.10.005
    [9]
    宋平, 高欢, 汪灵, 等. 玄武岩纤维基本特征及应用前景分析[J]. 矿产保护与利用,2022,42(4):173−178. doi: 10.13779/j.cnki.issn1001-0076.2022.01.041

    SONG Ping, GAO Huan, WANG Ling, et al. Basic characteristics and application prospect analysis of basalt fiber[J]. Conserv Utili Min Res,2022,42(4):173−178. doi: 10.13779/j.cnki.issn1001-0076.2022.01.041
    [10]
    KONG L, BAI J, LI W. Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review[J]. Fuel Process Technol,2021,215:106751. doi: 10.1016/j.fuproc.2021.106751
    [11]
    SHI W, BAI J, KONG L, et al. An overview of the coal ash transition process from solid to slag[J]. Fuel,2021,287:119537. doi: 10.1016/j.fuel.2020.119537
    [12]
    KRISHNAMOORTHY V, PISUPATI S. A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers[J]. Energies,2015,8(9):10430−10463. doi: 10.3390/en80910430
    [13]
    胡晓飞, 郭庆华, 刘霞, 等. 高钙高铁煤灰熔融及黏温特性研究[J]. 燃料化学学报,2016,44(7):769−776.

    HU Xiaofei, GUO Qinghua, LIU Xia, et al. Ash fusion and viscosity behavior of coal ash with high content of Fe and Ca[J]. J Fuel Chem Technol,2016,44(7):769−776.
    [14]
    SHI W, KONG L, BAI J, et al. Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures[J]. Fuel Process Technol,2018,181:18−24. doi: 10.1016/j.fuproc.2018.09.007
    [15]
    WANG Q, DING Y, RANDL N. Investigation on the alkali resistance of basalt fiber and its textile in different alkaline environments[J]. Constr Build Mater,2021,272:121670. doi: 10.1016/j.conbuildmat.2020.121670
    [16]
    许洁, 刘霞, 李德侠, 等. 煤灰流动温度预测模型的研究[J]. 燃料化学学报,2012,40(12):1415−1421.

    XU Jie, LIU Xia, LI Dexia, et al. Prediction model for flow temperature of coal ash[J]. J Fuel Chem Technol,2012,40(12):1415−1421.
    [17]
    石文举, 白进, 孔令学, 等. 不同气氛下Ca-Fe二元助剂改变高硅铝煤灰熔融温度的规律和机制[J]. 化工学报,2022,73(10):4638−4647.

    SHI Wenju, BAI Jin, KONG Lingxue, et al. The variety regulation and mechanism of high silica and alumina coal ash fusion temperature caused by Ca-Fe binary flux under different atmosphere[J]. CIESC J,2022,73(10):4638−4647.
    [18]
    SHI W, DAI X, BAI J, et al. A new method of estimating the liquidus temperature of coal ash slag using ash composition[J]. Chem Eng Sci,2018,175:278−285. doi: 10.1016/j.ces.2017.10.002
    [19]
    SONG W, TANG L, ZHU X, et al. Effect of coal ash composition on ash fusion temperatures[J]. Energy Fuels,2010,24(1):182−189. doi: 10.1021/ef900537m
    [20]
    HE C, BAI J, LI W, et al. Iron transformation behavior in coal ash slag in the entrained flow gasifier and the application for Yanzhou coal[J]. Fuel,2019,237:851−859. doi: 10.1016/j.fuel.2018.09.134
    [21]
    ZHANG J, XU X, CHENG F, et al. Study progress on inorganic fibers from industry solid wastes and the key factors determining their characteristics[J]. Materials,2022,15(20):7256. doi: 10.3390/ma15207256
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (291) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return