Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
WANG Yi, WANG Xudong, XUE Zhaoteng, MAO Dongsen. Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053
Citation: WANG Yi, WANG Xudong, XUE Zhaoteng, MAO Dongsen. Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053

Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas

doi: 10.19906/j.cnki.JFCT.2023053
Funds:  The project was supported by the Shanghai Natural Science Foundation (20ZR1455500) and the Shanghai Institute of Technology Collaborative Innovation Fund (XTCX2023-03)
  • Received Date: 2023-06-13
  • Accepted Date: 2023-06-30
  • Rev Recd Date: 2023-06-30
  • Available Online: 2023-09-01
  • Publish Date: 2024-02-02
  • A bifunctional catalyst was prepared by physical mixing of ZnZrOx metal oxide and SAPO-34 zeolite for the one-step conversion of synthesis gas to light olefins (STO) reaction. The effects of triethylamine, tetramethylammonium hydroxide and tetraethylammonium hydroxide solutions and different concentrations of triethylamine solution on the texture, structure and acidity of SAPO-34 zeolite were investigated. XRD, SEM, N2 adsorption and desorption, NH3-TPD were used to characterize the SAPO-34 zeolite and the STO reaction performance of the catalyst after alkali treatment was investigated. The results show that all three kinds of organic base with 0.06 mol/L post-treatment can etch some hierarchical channels on the surface of SAPO-34 zeolite, thus accelerating the diffusion of intermediate transition species formed on the surface of metal oxides into the channels of SAPO-34 zeolite in STO reaction, improving the CO conversion rate in STO reaction. At the same time, all three kinds of alkali treatments can reduce the acid amount and acid strength of SAPO-34 zeolite, thereby improving the selectivity for light olefins in the STO reaction. The treatment of SAPO-34 zeolite with 0.02−0.10 mol/L triethylamine resulted in the formation of hierarchical pores etched on the surface of SAPO-34 zeolite, which improved the conversion rate of CO in the STO reaction. Moreover, the acid strength and acidity of SAPO-34 zeolite treated with 0.02 and 0.06 mol/L triethylamine solutions decreased, inhibiting the formation of methane and the hydrogenation of light olefins. Therefore, as the concentration of alkali treatment gradually increased from 0, 0.02 to 0.06 mol/L, the selectivity for light olefins gradually increases. Under the reaction conditions of 400 ℃, 3.0 MPa and GHSV=3600 mL/(g·h), the CO conversion rate increased from 24.0% to 26.4%, and the selectivity of light olefins increased from 78.2% to 84.7% on the bifunctional catalyst composed of 0.06 mol/L triethylamine-treated SAPO-34 compared to untreated SAPO-34 zeolite, and the modified bifunctional catalyst had good catalytic stability.
  • loading
  • [1]
    ZHANG P, MENG F, LI X, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [2]
    FONSECA N, DOS SANTOS L R M, CERQUEIRA H S, et al. Olefins production from cracking of a Fischer-Tropsch naphtha[J]. Fuel,2021,95:183−189.
    [3]
    JOO E, PARK S, LEE M. Pyrolysis reaction mechanism for industrial naphtha cracking furnaces[J]. Ind Eng Chem Res,2001,40(11):2409−2415. doi: 10.1021/ie000774o
    [4]
    GONG F, YANG Z, HONG C, et al. Selective conversion of bio-oil to light olefins: Controlling catalytic cracking for maximum olefins[J]. Bioresour Technol,2011,102(19):9247−9254. doi: 10.1016/j.biortech.2011.07.009
    [5]
    AL-SHAMMARI A A, ALI S A, AL-YASSIR N, et al. Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures[J]. Fuel Process Technol,2014,122:12−22. doi: 10.1016/j.fuproc.2014.01.021
    [6]
    李保珍, 孟凡会, 王丽娜, 等. 合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能[J]. 燃料化学学报(中英文),2023,51(1):111−119.

    LI Baozhen, MENG Fanhui, WANG Lina, et al. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. J Fuel Chem Technol,2023,51(1):111−119.
    [7]
    SU J, ZHOU H, LIU S, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1297. doi: 10.1038/s41467-019-09336-1
    [8]
    VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [9]
    LI S, LIU X, LU Y. Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content[J]. Appl Catal A: Gen,2022,635:118552. doi: 10.1016/j.apcata.2022.118552
    [10]
    GONG K, LIN T, AN Y, et al. Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods[J]. Appl Catal A: Gen,2020,592:117414. doi: 10.1016/j.apcata.2020.117414
    [11]
    WANG M, WANG Z, LIU S, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Chin J Catal,2021,349:181−192.
    [12]
    刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报(中英文),2023,51(1):34−51.

    LIU Saisai, YAO Jingang, CHEN Guanyi, et al. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. J Fuel Chem Technol,2023,51(1):34−51.
    [13]
    JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [14]
    MENG F, LIANG X, WANG L, et al. Rational design of SAPO-34 zeolite in bifunctional catalysts for syngas conversion into light olefins[J]. Ind Eng Chem Res,2022,61(31):11397−11406. doi: 10.1021/acs.iecr.2c01111
    [15]
    皂辉杰, 姚金刚, 刘静, 等. 合成气一步法直接制低碳烯烃双功能催化剂研究新进展[J]. 燃料化学学报(中英文),2023,51(1):19−33.

    ZAO Huijie, YAO Jingang, LIU Jing, et al. New research progress on bifunctional catalysts for one-step direct production of low carbon olefins from syngas[J]. J Fuel Chem Technol,2023,51(1):19−33.
    [16]
    庹杰, 李石擎, 徐浩, 等. 分子筛结构设计及酸性调控在合成气催化转化中的应用进展[J]. 燃料化学学报(中英文),2023,51(1):1−18. doi: 10.1016/S1872-5813(22)60035-5

    TUO Jie, LI Shiqing, XU Hao, et al. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. J Fuel Chem Technol,2023,51(1):1−18. doi: 10.1016/S1872-5813(22)60035-5
    [17]
    HUANG Y, MA H, XU Z, et al. Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction[J]. Fuel,2022,273:117771.
    [18]
    魏晓娜, 李文双, 陈诗通, 等. 不同酸性SAPO-34分子的制备及催化合成气制低碳烯烃性能研究[J]. 工业催化,2022,30(2):41−47. doi: 10.3969/j.issn.1008-1143.2022.02.007

    WEI Xiaona, LI Wenshuang, CHENG Shitong, et al. Synthesis of SAPO-34 zeolites with different acidity and their catalytic performance in syngas to olefins reaction[J]. Catal Ind,2022,30(2):41−47. doi: 10.3969/j.issn.1008-1143.2022.02.007
    [19]
    YANG G, MENG F, ZHANG P, et al. Effect of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. Catal Sci Technol,2021,45(18):7967−6976.
    [20]
    LIU X, REN S, ZENG G, et al. Coke suppression in MTO over hierarchical SAPO-34 zeolites[J]. RSC Adv,2016,6(34):28787−28791. doi: 10.1039/C6RA02282K
    [21]
    VERBOEKEND D, MILINA M, PÉEZ-RAMÍREZ J. Hierarchical silicoaluminophosphates by postsynthetic modification: Influence of topology, composition, and silicon distribution[J]. Chem Mater,2014,26(15):4552−4562. doi: 10.1021/cm501774s
    [22]
    SUN C, WANG Y, WANG Z, et al. Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction[J]. C R Chim,2018,21(1):61−70. doi: 10.1016/j.crci.2017.11.006
    [23]
    LI Z, MARTÍNEZ-TRIGUERO J, CONCEPCIÓN P, et al. Methanol to olefins: Activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. Phys Chem Chem Phys,2013,15(35):14670−14680. doi: 10.1039/c3cp52247d
    [24]
    LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [25]
    KARGER J, RUTHVEN D M. Diffusion in nanoporous materials: Fundamental principles, insights and challenges[J]. New J Chem, 2016, 40(5): 4027-4048.
    [26]
    SCHNEIDER D, MEHLHORN D, ZEIGERMANN P. Transport properties of hierarchical micromesoporous materials[J]. Chem Soc Rev,2016,45(12):3439−3467. doi: 10.1039/C5CS00715A
    [27]
    JADAV D, BANDYOPADHYAY R, BANDYOPADHYAY M. Synthesis of hierarchical SAPO-5 & SAPO-34 materials by post‐synthetic alkali treatment and their enhanced catalytic activity in transesterification[J]. Eur J Inorg Chem,2020,2020(10):847−853. doi: 10.1002/ejic.201901250
    [28]
    MENG F, LI X, ZHANG P, et al. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [29]
    ZHANG L, LIANG D, WANG Y, et al. Design of the core-shell catalyst: An effective strategy for suppressing side reactions in syngas to light olefins direct selective conversion[J]. Chem Sci,2020,11(16):4097−4105. doi: 10.1039/C9SC05544D
    [30]
    CHENG K, GU B, LIU X, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return