Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Jianhui, HE Qirong, MU Hongmei, LIU Jia, LI Wenya, LENG Yanli. Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055
Citation: ZHANG Jianhui, HE Qirong, MU Hongmei, LIU Jia, LI Wenya, LENG Yanli. Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055

Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters

doi: 10.19906/j.cnki.JFCT.2023055
Funds:  The project was supported by the Scientific Research Foundation of Guizhou Minzu University (GZMUZK[2021] YB11), Lanzhou Resources & Environment Voc-Tech University, Yellow River Basin Ecotope Integration of Industry and Education R&D Fund (HHYF2023-08)
  • Received Date: 2023-06-05
  • Accepted Date: 2023-07-25
  • Rev Recd Date: 2023-07-12
  • Available Online: 2023-09-01
  • Publish Date: 2024-02-02
  • In this work, the reaction mechanism of DRM catalyzed by NiCo diatomic cluster was studied by density functional theory. Based on our studied that the minimum energy reaction path was found for four steps: CH4 dissociation, CO2 dissociation, oxidation of intermediates C* and CH*, and generation of H2 and H2O. Finally, the energetic span model was applied in the cycle reaction to obtain some kinetic information. At 298 K, it is hard to generate C* during the methane dehydrogenation process. At 913 K, the determining intermediate changes from IM1-1 to IM6-1, and the determining transition state changes from TS78-1 to TS56-1 of dehydrogenation of methane; Because of the reduction of energy spans, the elimination of C* and CH* are accelerated. This work can understand the mechanism of DRM catalyzed by NiCo diatomic clusters, which can provide theoretical reference for the experimental development.
  • loading
  • [1]
    ASHERIFT A T‚ CHEETHAM A K, GREEN M L H. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature,1991,52:225−226.
    [2]
    ALIOUI O, BADAWI M, ERTO A, et al. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: A review[J]. Catal Rev,2021,65(4):1−50.
    [3]
    WANG Z J, ZHAO Y, CUI L, et al. CO2 Reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: A case study of alternative catalyst reduction via non-hydrogen plasmas[J]. Green Chem,2007,9:554−559. doi: 10.1039/b614276a
    [4]
    BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev,1999,41(1):1−42. doi: 10.1081/CR-100101948
    [5]
    GADALLA A M, BARBARA B. The role of catalyst support on the activity of nickel for reforming methane with CO[J]. Chem Eng Sci,1988,43:3049−3062.
    [6]
    TOKUNAGA O, OGASAWARA S. Reduction of carbon dioxide with methane over Ni-catalyst[J]. React Kineti Catal L,1989,39(1):69−74.
    [7]
    ZHU Y A, CHEN D, ZHOU X G, et al. DFT studies of dry reforming of methane on Ni catalyst[J]. Catal Today,2009,148:260−267. doi: 10.1016/j.cattod.2009.08.022
    [8]
    FUJITA T, PENG X B, YAMAGUCHI A, et al. Nanoporous nickel composite catalyst for the dry reforming of methane[J]. ACS Omega,2018,3(12):19251−16657.
    [9]
    ABDULLAH B, ABD GHANI N A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170−185.s. doi: 10.1016/j.jclepro.2017.05.176
    [10]
    FAN M S, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem,2009,1(2):192−208.
    [11]
    WU Z, YANG B, MIAO S, et al. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane[J]. ACS Catal,2019,9(4):2693−2700. doi: 10.1021/acscatal.8b02821
    [12]
    ALSABBAN B, FALIVENE L, KOZLOV S M, et al. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction[J]. Appl Catal B: Environ,2017,213:177−189. doi: 10.1016/j.apcatb.2017.04.076
    [13]
    LYU L, SHENGENE M, MA Q, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane[J]. Fuel,2022,310:122375. doi: 10.1016/j.fuel.2021.122375
    [14]
    TURAP Y, WANG I, FU T, et al. Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane[J]. Int J Hydrogen Energy,2020,45(11):6538−6548.
    [15]
    CHAUDHARY P K, DEO G. Process and catalyst improvements for the dry reforming of methane[J]. Chem Eng Sci,2023,276:118767.
    [16]
    PALANICHAMY K, UMASANKAR S, GANESH S, et al. Highly coke resistant NiCo/KCC-1 catalysts for dry reforming of methane[J]. Int J Hydrogen Energy,2023,48(31):11727−11745. doi: 10.1016/j.ijhydene.2022.12.076
    [17]
    李文英, 冯杰, 谢克昌, 等. CH4-CO2重整反应镍催化剂的积炭性能研究[J]. 燃料化学学报,1997,25(5):460−464.

    LI Wenying, FENG Jie, XIE Kechang, et al. Studies on carbon deposition of Ni catalyst in CH4-CO2 reforming reaction[J]. J Fuel Chem Technol,1997,25(5):460−464.
    [18]
    BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A,1988,38:3098.
    [19]
    STEPHENS P J, DEVLIN F J, CHABLOWSKI C F. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623. doi: 10.1021/j100096a001
    [20]
    HAY P J, WADT W R. Ab inito effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. J Chem Phys,1985,82:270−83. doi: 10.1063/1.448799
    [21]
    HE J, YANG Z Q, DING C H, et al. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel,2018,226:400−409. doi: 10.1016/j.fuel.2018.04.031
    [22]
    GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90:2154. doi: 10.1063/1.456010
    [23]
    GONZALEZ C, SCHLEGEL H B. Improved algorithms for reaction path following: Higher-order implicit algorithms[J]. J Chem Phys,1991,95:5853. doi: 10.1063/1.461606
    [24]
    FRISCH M J, TRUCKS G W, SCHEGEL H B, et al. Gaussian 09[CP]. Revision D. 01, Gaussian Inc, Wallingford CT, 2013.
    [25]
    KOZUCH S, SHAIK S. A combined kinetic-quantum mechanical model for assessment of catalytic cycles: Application to cross-coupling and heck reactions[J]. J Am Chem Soc,2006,128:3355−3365.
    [26]
    KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration[J]. J Phys Chem A,2008,112:6032−6041. doi: 10.1021/jp8004772
    [27]
    UHE A, KOZUCH S, SHAIK S. Software news and update automatic analysis of computed catalytic cycles[J]. J Comput Chem,2011,32:978−985. doi: 10.1002/jcc.21669
    [28]
    KOZUCH S, SHAIK S. How to conceptualize catalytic cycles? The energetic span model[J]. Acc Chem Res,2011,44:101−110. doi: 10.1021/ar1000956
    [29]
    陈涛, 方镭, 罗伟, 等. 双金属合金团簇M12Ni(M=Pt, Sn, Cu)催化甲烷干法重整反应的理论研究[J]. 高等学校化学学报,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267

    CHEN Tao, FANG Lei, LUO Wei, et al. Theoretical study of dry reforming of methane catalyzed by bimetallic alloy cluster M12Ni(M=Pt, Sn, Cu)[J]. Chem J Chin Univ,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267
    [30]
    FOPPA L, MARGOSSIAN T, KIM SM, et al. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane[J]. J Am Chem Soc,2017,139:17128−17139. doi: 10.1021/jacs.7b08984
    [31]
    CHEN S Y, ZAFFRAN J, YANG B. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J]. Appl Catal B: Environ,2020,270:118859. doi: 10.1016/j.apcatb.2020.118859
    [32]
    ZHANG L Y, MENG Y, YANG J M, et al. Theoretical study on dry reforming of methane catalyzed by Cu12M (M=Cu, Fe, Co, Ni) core-shell bimetallic clusters[J]. Fuel,2021,303:121263. doi: 10.1016/j.fuel.2021.121263
    [33]
    李杰, 李慧. Cu13、Cu12Zr和Cu12Zn团簇上CO2还原反应的密度泛函理论研究[J]. 燃料化学学报(中英文),2023,51(3):314−319.

    LI Jie, LI Hui. Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters[J]. J Fuel Chem Technol,2023,51(3):314−319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return