Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
XU Dawei, ZHANG Jialin, GAO Yue, LI Xingang. Catalytic soot combustion performance of core-shell Co3O4@MnOx monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 184-194. doi: 10.19906/j.cnki.JFCT.2023057
Citation: XU Dawei, ZHANG Jialin, GAO Yue, LI Xingang. Catalytic soot combustion performance of core-shell Co3O4@MnOx monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 184-194. doi: 10.19906/j.cnki.JFCT.2023057

Catalytic soot combustion performance of core-shell Co3O4@MnOx monolithic catalyst

doi: 10.19906/j.cnki.JFCT.2023057
Funds:  The project was supported by National Natural Science Foundation of China (21878213)
  • Received Date: 2023-06-25
  • Accepted Date: 2023-07-03
  • Rev Recd Date: 2023-07-01
  • Available Online: 2023-09-01
  • Publish Date: 2024-02-02
  • The Co3O4@MnOx monolithic catalyst with nanorod morphology was synthesized on nickel foam by a two-step hydrothermal process and characterized by XRD, EDS-mapping, H2-TPR, XPS, Raman and Soot-TPR. The catalytic soot combustion activities of the catalysts were investigated in a fixed-bed micro-reactor and the intrinsic activities of the catalysts were investigated by the isothermal kinetic experiments. The results reveal that the Co3O4@MnOx catalyst shows a core-shell structure with Co3O4 as the core and MnOx as the shell. Compared with Co-NW, there exist more high-valent state species of Mn4+ and Mn3+ and oxygen vacancies on the Co3O4@MnOx catalyst surface due to the interaction between Co3O4 and MnOx, which improve the redox performance of Co3O4@MnOx. Compared with Co-NW, the active oxygen species amount of Co3O4@MnOx is increased by two times, and Co3O4@MnOx shows enhanced activity, which lowers the ignition temperature by 148 ℃ in the presence of NO. Also, compared with Co-NW, Co3O4@MnOx decreases the activation energy of soot combustion reaction from 113.6 to 102.2 kJ/mol, and its intrinsic activity is increased by two times.
  • loading
  • [1]
    王磊, 曹春梅, 邢令利, 等. 锰铈相互作用对催化碳烟燃烧性能的影响[J]. 化学工业与工程,2018,35(4):32−37. doi: 10.13353/j.issn.1004.9533.20161063

    WANG Lei, CAO Chunmei, XING Lingli, et al. The effect of manganese/cerium interactions in catalytic soot combustion[J]. Chem Ind Eng,2018,35(4):32−37. doi: 10.13353/j.issn.1004.9533.20161063
    [2]
    PENG C, YU D, ZHANG C, et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous-mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion[J]. J Environ Sci,2023,125:82−94. doi: 10.1016/j.jes.2021.10.029
    [3]
    DHAL G C, MOHAN D, PRASAD R. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: An overview[J]. Catal Sci Technol,2017,7(9):1803−1825. doi: 10.1039/C6CY02612E
    [4]
    REN W, DING T, YANG Y X, et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides[J]. ACS Catal,2019,9(9):8772−8784. doi: 10.1021/acscatal.9b01897
    [5]
    YU Q, XIONG J, LI Z, et al. Optimal exposed crystal facets of α-Mn2O3 catalysts with enhancing catalytic performance for soot combustion[J]. Catal Today,2021,376:229−238. doi: 10.1016/j.cattod.2020.05.039
    [6]
    PENG R, LI S, SUN X, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Appl Catal B: Environ,2018,220:462−470. doi: 10.1016/j.apcatb.2017.07.048
    [7]
    LEE J H, JO D Y, CHOUNG J W, et al. Roles of noble metals (M=Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: Active oxygen species and DFT calculations[J]. J Haz Mater,2021,403:124085. doi: 10.1016/j.jhazmat.2020.124085
    [8]
    RONG S P, ZHANG P Y, LIU F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catal,2018,8:3435−3446. doi: 10.1021/acscatal.8b00456
    [9]
    LEGUTKO P, STELMACHOWSKI P, YU X H, et al. Catalytic soot combustion-general concepts and alkali promotion[J]. ACS Catal,2023,13:3395−3418. doi: 10.1021/acscatal.2c05994
    [10]
    ZHAI G J, WANG J G, CHEN Z M, et al. Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets[J]. Chem Eng J,2018,337:488−498. doi: 10.1016/j.cej.2017.12.141
    [11]
    CHENG L, MEN Y, WANG J G, et al. Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion[J]. Appl Catal B: Environ,2017,204:374−384. doi: 10.1016/j.apcatb.2016.11.041
    [12]
    CAO C M, YANG H, XIAO J Y, et al. Catalytic diesel soot elimination over potassium promoted transition metal oxide (Co/Mn/Fe) nanosheets monolithic catalysts[J]. Fuel,2021,305(9):121446.
    [13]
    YU Y F, MENG M, DAI F F. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode[J]. Nanoscale,2013,5(3):904−909. doi: 10.1039/C2NR33269H
    [14]
    ZHAO P, FENG N J, FANG F, et al. Surface acid etching for efficient anchoring of potassium on 3DOM La0.8Sr0.2MnO3 catalyst: An integration strategy for boosting soot and NOx simultaneous elimination[J]. J Haz Mater,2021,409:124916.
    [15]
    XING L L, YANG Y X, CAO C M, et al. Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion[J]. ACS Sustainable Chem Eng,2018,6(12):16544−16554. doi: 10.1021/acssuschemeng.8b03645
    [16]
    CAO C M, XING L L, YANG Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Appl Catal B: Environ,2017,218:32−45. doi: 10.1016/j.apcatb.2017.06.035
    [17]
    ZHAO Y, HU L F, ZHAO S Y, et al. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance[J]. Adv Funct Mater,2016,26(23):4085−4093. doi: 10.1002/adfm.201600494
    [18]
    XU K B, ZOU R J, LI W Y, et al. Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1-x(OH)2 core-shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors[J]. J Mater Chem A,2014,2(26):10090−10097. doi: 10.1039/c4ta01489h
    [19]
    KONG D Z, LUO J S, WANG Y L, et al. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage[J]. Adv Funct Mater,2014,24(24):3815−3826. doi: 10.1002/adfm.201304206
    [20]
    ZHANG Z L, ZHANG Y X, WANG Z P, et al. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2[J]. J Catal,2010,271(1):12−21. doi: 10.1016/j.jcat.2010.01.022
    [21]
    SHANG Z, SUN M, CHE X, et al. The existing states of potassium species in K-doped Co3O4 catalysts and their influence on the activities for NO and soot oxidation[J]. Catal Sci Technol,2017,7(20):4710−4719. doi: 10.1039/C7CY01444A
    [22]
    YU X H, LI J M, WEI Y C, et al. Three dimensionally ordered macroporous MnxCe1–xOδ and Pt/Mn0.5Ce0.5Oδ catalysts: Synthesis and catalytic performance for soot oxidation[J]. Ind Eng Chem Res,2014,53(23):9653−9664. doi: 10.1021/ie500666m
    [23]
    JI F, MEN Y, WANG J G, et al. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4[J]. Appl Catal B: Environ,2018,242:227−237.
    [24]
    YU X H, ZHAO Z, WEI Y C, et al. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion[J]. Sci Rep,2017,7:43894. doi: 10.1038/srep43894
    [25]
    FENG N J, CHEN C, MENG J, et al. K-Mn supported on three-dimensionally ordered macroporous La0.8Ce0.2FeO3 catalysts for the catalytic combustion of soot[J]. Appl Surf Sci,2017,399:114−122. doi: 10.1016/j.apsusc.2016.12.066
    [26]
    XIONG J, WU Q Q, MEI X L, et al. Fabrication of spinel-type PdxCo3-xO4 binary active sites on 3D ordered meso-macroporous Ce-ZrO2 with enhanced activity for catalytic soot oxidation[J]. ACS Catal,2018,8(9):7915−7930. doi: 10.1021/acscatal.8b01924
    [27]
    CAO C M, LI X G, ZHA Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale,2016,8(11):5857−5864. doi: 10.1039/C5NR05310B
    [28]
    ZHAO S, HU F Y, LI J H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion[J]. ACS Catal,2016,6:3433−3441. doi: 10.1021/acscatal.6b00144
    [29]
    LIU Y, XU J, LI H R, et al. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts[J]. J Mater Chem A,2015,3:11543−11553. doi: 10.1039/C5TA01212K
    [30]
    WANG C L, WANG D D, YANG Y, et al. Enhanced CO oxidation on CeO2/Co3O4 nanojunctions derived from annealing of metal organic frameworks[J]. Nanoscale,2016,8(47):19761−19768. doi: 10.1039/C6NR07725K
    [31]
    JIANG M, ABUSHRENTA N, Wu X C, et al. Investigation for the synthesis of hierarchical Co3O4@MnO2 nanoarrays materials and their application for super-capacitor[J]. J Mater Sci: Mater Electron,2017,28:1281−1287. doi: 10.1007/s10854-016-5656-1
    [32]
    FEDYNA M, LEGUTKO P, GRYBOS J, et al. Multiple doping of cryptomelane catalysts by Co, Cu, Ag and Ca for efficient soot oxidation and its effect on NO2 formation and SO2 resistance[J]. Fuel,2023,348:128553. doi: 10.1016/j.fuel.2023.128553
    [33]
    DAI W Y, LI Z H, LI C C, et al. Revealing the effects of preparation methods over Ce-MnOx catalysts for soot combustion: Physicochemical properties and catalytic performance[J]. J Ind Eng Chem,2023,121:15−26. doi: 10.1016/j.jiec.2023.01.013
    [34]
    MANE R, KIM H, HAN K, et al. Pivotal role of MnOx physicochemical structure in soot oxidation activity[J]. Fuel,2023,346:128287. doi: 10.1016/j.fuel.2023.128287
    [35]
    TANG W X, XIAO W, Wang S B, et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts[J]. Appl Catal B: Environ,2018,226:585−595. doi: 10.1016/j.apcatb.2017.12.075
    [36]
    ZHU Z Z, LU G Z, ZHANG Z G, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method[J]. ACS Catal,2013,3(6):1154−1164. doi: 10.1021/cs400068v
    [37]
    TANG W X, Wu X F, Li S D, et al. Porous Mn-Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs[J]. Catal Commun,2014,56:134−138. doi: 10.1016/j.catcom.2014.07.023
    [38]
    ZHAO S, LI K Z, JIANG S, et al. Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion[J]. Appl Catal B: Environ,2016,181:236−248. doi: 10.1016/j.apcatb.2015.08.001
    [39]
    ZHAO K, LI J M, WANG L Y, et al. Preparation of cordierite monolith catalysts with the coating of K-modified spinel MnCo2O4 oxide and their catalytic performances for soot combustion[J]. Catalysts,2022,12(3):295. doi: 10.3390/catal12030295
    [40]
    GAO Q, RANJAN C, PAVLOVIC Z, et al. Enhancement of stability and activity of MnOx/Au electrocatalysts for oxygen evolution through adequate electrolyte composition[J]. ACS Catal,2015,5:7265−7275. doi: 10.1021/acscatal.5b01632
    [41]
    HONG F, YUE B B, HIRAO N, et al. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure[J]. Nature,2017,7:1−7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return