Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
GUO Guizhen, YAO Chenzhong, SUN Youyi, XIN Dehua, LÜ Baohua. Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065
Citation: GUO Guizhen, YAO Chenzhong, SUN Youyi, XIN Dehua, LÜ Baohua. Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065

Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties

doi: 10.19906/j.cnki.JFCT.2023065
Funds:  The project was supported by the General Program of Education Department of Shanxi Province (2020L0566) and the Doctoral research start project (YQ2022008).
  • Received Date: 2023-06-20
  • Accepted Date: 2023-08-14
  • Rev Recd Date: 2023-08-01
  • Available Online: 2023-09-18
  • Publish Date: 2024-02-02
  • Oxidized carbon nitride nanosheets (o-CN NSs) was prepared by oxidative stripping with bulk carbon nitride (CN) as the precursor, and then reduced carbon nitride nanosheet (r-CN NSs) was prepared via reduced o-CN NSs. The thickness of o-CN NSs and r-CN NSs are both about 2 nm and retain the heptazine ring skeleton structure of pure CN. Compared with o-CN NSs, r-CN NSs has a smaller band gap (2.62 eV), wider photoresponse range (485 nm) and higher H2 evolution rates (1700 μmol/(g·h)). The H2 evolution rates of r-CN NSs is 8.5 times of CN and 2.1 times of o-CN NSs. After a 20 h cycle test, the photocatalytic hydrogen production efficiency of r-CN NSs has no attenuation, has well photocatalytic stability. Experimental and theoretical analyses reveal that r-CN NSs is nanosheet structure with amino group at the edge. The introduction of amino group improves the crystallinity of nanosheets, improves the separation efficiency of electrons and holes, broadens the photoresponse range of nanosheets, thus resulting in the enhanced photocatalytic performance.
  • loading
  • [1]
    SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule,2018,2(10):1925−1949. doi: 10.1016/j.joule.2018.08.016
    [2]
    DALLE K E, WARNAN J, LEUNG J J, et al. Electro-and solar-driven fuel synthesis with first row transition metal complexes[J]. Chem Rev,2019,119(4):2752−2857. doi: 10.1021/acs.chemrev.8b00392
    [3]
    WEI J D, LUO D, SHI M M, et al. Ultrathin carbon nitride nanosheets exfoliated and In situ modified with a nickel bis (Chelate) complex for boosting photocatalytic performances[J]. Inorg Chem,2023,62(28):10973−10983. doi: 10.1021/acs.inorgchem.3c00952
    [4]
    VU N N, KALIAGUINE S, DO T O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight -driven photocatalytic reduction of CO2 into fuels[J]. Adv Funct Mater,2019,29(31):1901825. doi: 10.1002/adfm.201901825
    [5]
    SHARMA R, ALMASI M, NEHRA S P, et al. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review[J]. Renewable Sustainable Energy Rev,2022,168:112776. doi: 10.1016/j.rser.2022.112776
    [6]
    LAM S S, NUYEN V H, DINH M T N, et al. Mainstream avenues for boosting graphitic carbon nitride efficiency: Towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation[J]. J Mater Chema,2020,8(21):10571−10603. doi: 10.1039/D0TA02582H
    [7]
    YUAN Y J, CHEN D Q, XIONG M, et al. Bandgap engineering of (AgIn)xZn2 (1–x) S2 quantum dot photosensitizers for photocatalytic H2 generation[J]. Appl Catal B: Environ,2017,204:58−66. doi: 10.1016/j.apcatb.2016.11.024
    [8]
    ZHANG P, GUAN B Y, YU L, et al. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectron chemical performance for solar energy conversion[J]. Chem,2018,4(1):162−173. doi: 10.1016/j.chempr.2017.10.018
    [9]
    YANG B, LI X L, ZHANG Q, et al. Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production[J]. Appl Catal B: Environ,2022,314:121521. doi: 10.1016/j.apcatb.2022.121521
    [10]
    孙有为, 王曦, 周峰, 等. CoNi 双金属改性石墨相氮化碳的制备及光催化性能的研究[J]. 燃料化学学报,2022,50(11):1449−1457.

    SUN Youwei, WANG Xi, ZHOU Feng, et al. CoNi bimetallic co-catalyst decorated graphitic-phase carbon nitride preparation and photocatalytic properties[J]. J Fuel Chem Technol,2022,50(11):1449−1457.
    [11]
    JIANG W S, ZHAO Y J, ZONG X P, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride[J]. Angew Chem Int Ed,2021,60(11):6124−6129. doi: 10.1002/anie.202015779
    [12]
    WANG Y Y, ZHANG X, DING X, et al. Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy[J]. Compost Sci Technol,2021,205:108693. doi: 10.1016/j.compscitech.2021.108693
    [13]
    WU Y, XIONG P, WU J, et al. Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution[J]. Nano-micro Let,2021,13:47−59. doi: 10.1007/s40820-020-00572-5
    [14]
    YUAN Y J, SHEN Z K, WU S T, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity[J]. Appl Catal B: Environ,2019,246:120−128. doi: 10.1016/j.apcatb.2019.01.043
    [15]
    CHEN L, LIANG X, WANG H X, et al. Ultra-thin carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Chem Eng J,2022,442:136115. doi: 10.1016/j.cej.2022.136115
    [16]
    MAHVELATI-SHAMSABADI T, FATTAHIMOGHADDAM H, LEE B K, et al. Caesium sites coordinated in Boron-doped porous and wrinkled graphitic carbon nitride nanosheets for efficient charge carrier separation and transfer: Photocatalytic H2 and H2O2 production[J]. Chem Eng J,2021,423:130067. doi: 10.1016/j.cej.2021.130067
    [17]
    REN Y M, YU C M, CHEN Z H, et al. Two-dimensional polymer nanosheets for efficient energy storage and conversion[J]. Nano Res,2021,14:2023−2036. doi: 10.1007/s12274-020-2976-5
    [18]
    GAO X C, FENG J, SU D W, et al. In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution[J]. Nano Energy,2019,59:598−609. doi: 10.1016/j.nanoen.2019.03.016
    [19]
    ZHOU X B, LI Y F, XING Y, et al. Effects of the preparation method of Pt/g-C3N4 photocatalysts on their efficiency for visible-light hydrogen production[J]. Dalton Trans,2019,48:15068−15073. doi: 10.1039/C9DT02938A
    [20]
    MALIK R, TOMER V K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production[J]. Renewable Sustainable Energy Rev,2021,135:1−14.
    [21]
    LIN Z, ZHANG Z Q, WANG Y Q, et al. Anchoring single nickel atoms on carbon-vacant carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Chem Res Chin Univ,2022,38:1243−1250. doi: 10.1007/s40242-022-2194-7
    [22]
    OU H H, YANG P J, LIN L H, et al. Carbon nitride aerogels for the photoredox conversion of water[J]. Angew Chem Int Ed,2017,129(36):10905−10910.
    [23]
    YANG H, ZHOU Q, FANG Z Z, et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing[J]. Chem,2021,7(10):2708−2721. doi: 10.1016/j.chempr.2021.06.010
    [24]
    NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater,2012,22(22):4763−4770. doi: 10.1002/adfm.201200922
    [25]
    LOTSCH B V, DOBLINGER M, SEHNERT J, et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer[J]. Chem-Eur J,2007,13(17):4969−4980. doi: 10.1002/chem.200601759
    [26]
    REDDY N R, BHARGAV U, KUMARI M M, et al. Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production[J]. Int J Hydrogen Energy,2020,45(13):7584−7615. doi: 10.1016/j.ijhydene.2019.09.041
    [27]
    VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353(6306): 1413-1416.
    [28]
    LI D, MVLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101−105. doi: 10.1038/nnano.2007.451
    [29]
    STANKOVICH S, DUKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558−1565. doi: 10.1016/j.carbon.2007.02.034
    [30]
    RAHMAN M Z, KIBRIA M G, MULLINS C B. Metal-free photocatalysts for hydrogen evolution[J]. Chem Soc Rev,2020,49(6):1887−1931. doi: 10.1039/C9CS00313D
    [31]
    WEI J D, ZHAO R Q, LUO D, et al. Atomically precise Ni6 (SC2H4Ph)12 nanoclusters on graphitic carbon nitride nanosheets for boosting photocatalytic hydrogen evolution[J]. J Colloid Interf Sci,2023,631:212−221. doi: 10.1016/j.jcis.2022.11.010
    [32]
    LUO L, GONG Z, MA J, et al. Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water[J]. Appl Catal B: Environ,2021,284:119742. doi: 10.1016/j.apcatb.2020.119742
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return