Volume 52 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
WANG Zhen, ZHAO Hui, ZHOU Juhong, SHENG Kefa, WANG Tao, JIANG Binbin. α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066
Citation: WANG Zhen, ZHAO Hui, ZHOU Juhong, SHENG Kefa, WANG Tao, JIANG Binbin. α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066

α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery

doi: 10.19906/j.cnki.JFCT.2023066
Funds:  The project was supported by Anhui Province Natural Science Foundation (2008085QB53), Natural Science Research Project of Anhui Province Education Department (KJ2021A0642, KJ2021A0655), Open Project of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials (ZD2022004).
  • Received Date: 2023-07-13
  • Accepted Date: 2023-08-14
  • Rev Recd Date: 2023-08-13
  • Available Online: 2023-09-18
  • Publish Date: 2024-02-02
  • Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important reactions for rechargeable Zinc-air batteries (RZABs). Unfortunatly, OER holds a high thermodynamic equilibrium potential and complex reaction path, which require an large votage to derive this reaction and greatly hinder its commercial application. Herein, α-MnO2 was successfully achieved and as the bifunctional ORR/iodide oxidation reaction (IOR) electrocatalyst. In alkline media, α-MnO2 exhibits fast kinetics and low oxidation potential for IOR. Expectedly, α-MnO2 exhibits remarkable IOR activity in 1.0 mol/L KOH with 0.5 mol/L KI. Compared with potential at 10 mA/cm2 for OER (1.709 V vs. RHE), the potential at 10 mA/cm2 reduce 398 mV (1.311 V vs. RHE) for α-MnO2 during IOR process. α-MnO2 also provides small Tafel slope of 57.5 mV/dec. Additionly, α-MnO2 represents outsanding ORR performances with respect to Pt/C. As an air electrode for RZAB, the fabricated RZAB delivers excellent performances. To be specific, at 5 mA/cm2, the voltage gap between charging and discharging reduces from 0.97 V to 0.61 V, energy efficiency increses from 54.9% to 66.2%. This work provide an unique strategy to construct bifunction ORR/IOR electrocatalysts and promote the commercialization of RZABs.
  • loading
  • [1]
    WANG M, CHAO F, LIU Y, et al. Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction[J]. J Fuel Chem Technol,2023,51(5):581−588. doi: 10.1016/S1872-5813(22)60067-7
    [2]
    徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学,2020,26(4):531−562. doi: 10.13208/j.electrochem.200524

    XU Nengneng, QIAO Jinli. Recent progress in bifunctional catalysts for zinc-air batteries[J]. J Electrochem,2020,26(4):531−562. doi: 10.13208/j.electrochem.200524
    [3]
    ZHANG K, ZOU R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small,2021,17(37):2100129. doi: 10.1002/smll.202100129
    [4]
    ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chem Soc Rev,2021,50(13):7745−7778. doi: 10.1039/D1CS00135C
    [5]
    ZHAO S, LIU T, DAI Y, et al. Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%[J]. Appl Catal B: Environ,2023,320:121992. doi: 10.1016/j.apcatb.2022.121992
    [6]
    LEI H, MA L, WAN Q, et al. Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution[J]. Adv Energy Mater,2022,12(48):2202522. doi: 10.1002/aenm.202202522
    [7]
    XUE H, MENG A, YANG T, et al. Controllable oxygen vacancies and morphology engineering: Ultra-high HER/OER activity under base-acid conditions and outstanding antibacterial properties[J]. J Energy Chem,2022,71:639−651. doi: 10.1016/j.jechem.2022.04.052
    [8]
    GU Y, YAN G, LIAN Y, et al. MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries[J]. Energy Storage Mater,2019,23:252−260. doi: 10.1016/j.ensm.2019.05.006
    [9]
    WU K, SHI L, WANG Z, et al. A general strategy to generate oxygen vacancies in bimetallic layered double hydroxides for water oxidation[J]. Chem Commun,2023,59(21):3138−3141. doi: 10.1039/D3CC00096F
    [10]
    CHANG Y, ZHAI P, HOU J, et al. Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: From simulation to experiment[J]. Adv Energy Mater,2022,12(1):2102359. doi: 10.1002/aenm.202102359
    [11]
    宋卓卓, 余宗宝, 武宏大, 等. CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4

    SONG Zhuozhuo, YU Zongbao, WU Hongda, et al. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [12]
    YANG L, WANG D, LV Y, et al. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-Air batteries[J]. Carbon,2019,144:8−14. doi: 10.1016/j.carbon.2018.12.008
    [13]
    JIANG B, CHEONG W C, TU R, et al. Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction[J]. Sci China Mater,2021,64(11):2729−2738. doi: 10.1007/s40843-021-1678-y
    [14]
    QIU B, WANG C, ZHANG N, et al. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation[J]. ACS Catal,2019,9(7):6484−6490. doi: 10.1021/acscatal.9b01819
    [15]
    DIAZ-MORALES O, LEDEZMA-YANEZ I, KOPER M T M, et al. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction[J]. ACS Catal,2015,5(9):5380−5387. doi: 10.1021/acscatal.5b01638
    [16]
    YANG X, LI Z, JUN Q I N, et al. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. J Fuel Chem Technol,2021,49(6):827−834. doi: 10.1016/S1872-5813(21)60084-1
    [17]
    ZHANG X, SHEN W, LI Z, et al. Carbon-based active support for water oxidation electrocatalyst: Making full use of the available surface area[J]. Carbon,2020,167:548−558. doi: 10.1016/j.carbon.2020.06.022
    [18]
    赵丹丹, 张楠, 卜令正, 等. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学,2018,24(5):455−465.

    ZHAO Dandan, ZHANG Nan, BU Liangzheng, et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. J Electrochem,2018,24(5):455−465.
    [19]
    FANG J, ZHANG X, WANG X, et al. A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries[J]. J Mater Chem A,2020,8(31):15752−15759. doi: 10.1039/D0TA02544E
    [20]
    TAN Y, ZHANG Z, LEI Z, et al. Electronic modulation optimizes OH* intermediate adsorption on Co-Nx-C sites via coupling CoNi alloy in hollow carbon nanopolyhedron toward efficient reversible oxygen electrocatalysis[J]. Appl Catal B: Environ,2022,304:121006. doi: 10.1016/j.apcatb.2021.121006
    [21]
    WANG T, CAO X, JIAO L. Progress in hydrogen production coupled with electrochemical oxidation of small molecules[J]. Angew Chem Int Ed, 2022: e202213328.
    [22]
    ZHANG M, ZHU J, WAN R, et al. Synergistic effect of nickel oxyhydroxide and tungsten carbide in electrocatalytic alcohol oxidation[J]. Chem Mater,2022,34(3):959−969. doi: 10.1021/acs.chemmater.1c02535
    [23]
    LI Y, WEI X, HAN S, et al. MnO2 electrocatalysts coordinating alcohol oxidation for ultra‐durable hydrogen and chemical productions in acidic solutions[J]. Angew Chem Int Ed,2021,133(39):21634−21642. doi: 10.1002/ange.202107510
    [24]
    CHEN S, DUAN J, VASILEFF A, et al. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion[J]. Angew Chem Int Ed,2016,55(11):3804−3808. doi: 10.1002/anie.201600387
    [25]
    ZHU Y, LIU C, CUI S, et al. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH) 2 catalyst for UOR[J]. Adv Mater, 2023: 2301549.
    [26]
    陈晨欣, 何苏祺, KAMRAN D, 等. 海胆状NiMoO4纳米棒阵列作为高效双功能催化剂用于电催化及光伏驱动尿素电解[J]. 催化学报,2022,43(5):1267−1276. doi: 10.1016/S1872-2067(21)63962-1

    CHEN Chenxin, HE Suqi, KAMRAN D, et al. Sea urchin like NiMoO4 nanorod arrays as efficient bifunctional catalysts for electrocatalysis and photovoltaic driven urea electrolysis[J]. Chin J Catal,2022,43(5):1267−1276. doi: 10.1016/S1872-2067(21)63962-1
    [27]
    LIN C, ZHANG P, WANG S, et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. J Alloy Compd,2020,823:153784. doi: 10.1016/j.jallcom.2020.153784
    [28]
    WANG Y, YAN W, NI M, et al. Surface valence regulation of cobalt-nickel foams for glucose oxidation-assisted water electrolysis[J]. Chem Commun,2023,59(17):2485−2488. doi: 10.1039/D2CC05270A
    [29]
    PENG S M, PATIL S B, CHANG C C, et al. Fast charge transfer between iodide ions and a delocalized electron system on the graphite surface for boosting hydrogen production[J]. J Mater Chem A,2022,10(45):23982−23989. doi: 10.1039/D2TA06517G
    [30]
    ADAM D B, TSAI M C, AWOKE Y A, et al. Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production[J]. Appl Catal B: Environ,2022,316:121608. doi: 10.1016/j.apcatb.2022.121608
    [31]
    HU E, YAO Y, CHEN Y, et al. Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)2 nanosheet arrays[J]. Nanoscale Adv,2021,3(2):604−610. doi: 10.1039/D0NA00847H
    [32]
    ADAM D B, TSAI M C, AWOKE Y A, et al. Iodide oxidation reaction catalyzed by ruthenium-tin surface alloy oxide for efficient production of hydrogen and iodine simultaneously[J]. ACS Sustainable Chem Eng,2021,9(26):8803−8812. doi: 10.1021/acssuschemeng.1c01867
    [33]
    DESSIE T A, HUANG W H, ADAM D B, et al. Efficient H2 evolution coupled with anodic oxidation of iodide over defective carbon-supported single-atom Mo-N4 electrocatalyst[J]. Nano Lett,2022,22(18):7311−7317. doi: 10.1021/acs.nanolett.2c01229
    [34]
    TANG Y J, ZHENG S S, CAO S, et al. Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction[J]. J Mater Chem A,2020,8:18492−18514. doi: 10.1039/D0TA05985D
    [35]
    胡文静, 班锦锦, 谢顺利, 等. 氧化锰基电催化材料的设计合成及其铝空气电池应用[J]. 硅酸盐通报,2023,42(2):728−735 + 742. doi: 10.16552/j.cnki.issn1001-1625.2023.02.011

    HU Wen-jing, BAN Jin-jin, XIE Shun-li, et al. Design and synthesis of manganese oxide based electrocatalytic materials and application of aluminium-air battery[J]. J Chin Ceram Soc,2023,42(2):728−735 + 742. doi: 10.16552/j.cnki.issn1001-1625.2023.02.011
    [36]
    赵慧, 姜日娟, 张勇, 等. 用于锌-空气电池的MnO2纳米片@Ni-氮掺杂石墨烯气凝胶[J]. 科学通报,2021,66(14):1758−1766. doi: 10.1360/TB-2020-1469

    ZHAO Hui, JIANG Rijuan, ZHANG Yong, et al. MnO2 nanosheets@Ni nitrogen doped graphene aerogel for zinc air batteries[J]. Chin Sci Bull,2021,66(14):1758−1766. doi: 10.1360/TB-2020-1469
    [37]
    CAO Y L, YANG H X, AI X P, et al. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution[J]. J Electroanal Chem,2003,557:127−134. doi: 10.1016/S0022-0728(03)00355-3
    [38]
    MENG Y, SONG W, HUANG H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J Am Chem Soc,2014,136(32):11452−11464. doi: 10.1021/ja505186m
    [39]
    LI P C, HU C C, LEE T C, et al. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries[J]. J Power Sources,2014,269:88−97. doi: 10.1016/j.jpowsour.2014.06.108
    [40]
    LI P C, HU C C, NODA H, et al. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: effects of the crystalline structure of manganese oxides[J]. J Power Sources,2015,298:102−113. doi: 10.1016/j.jpowsour.2015.08.051
    [41]
    SHAO C, YIN K, LIAO F, et al. Rod-shaped α-MnO2 electrocatalysts with high Mn3+ content for oxygen reduction reaction and Zn-air battery[J]. J Alloy Compd,2021,860:158427. doi: 10.1016/j.jallcom.2020.158427
    [42]
    黄乐珩, 程高, 赵英霞, 等. 不同晶型MnO2纳米阵列的可控合成及其电催化析氧性能[J]. 无机化学学报,2022,38(2):333−343.

    HUANG Leheng, CHENG Gao, ZHAO Yingxia, et al. Controllable synthesis of different crystalline MnO2 nanoarrays and their electrocatalytic oxygen evolution performance[J]. J Inorg Chem,2022,38(2):333−343.
    [43]
    YIN M, MIAO H, HU R, et al. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range[J]. J Power Sources,2021,494:229779. doi: 10.1016/j.jpowsour.2021.229779
    [44]
    CHEN B, MIAO H, HU R, et al. Efficiently optimizing the oxygen catalytic properties of the birnessite type manganese dioxide for zinc-air batteries[J]. J Alloy Compd,2021,852:157012. doi: 10.1016/j.jallcom.2020.157012
    [45]
    ZHANG Y, QIN H, ALFRED M, et al. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions[J]. Energy Storage Mater,2021,42:88−96. doi: 10.1016/j.ensm.2021.07.026
    [46]
    任志立, 段磊, 徐守冬, 等. Pt/Co-N-C电催化材料的制备及其碱性ORR性能[J]. 人工晶体学报,2023,52(4):654−662.

    REN Zhi-li, DUAN Lei, XU Shou-dong, et al. Preparation of Pt/Co-N-C electrocatalytic materials and their alkaline ORR properties[J]. J Synth Cryst,2023,52(4):654−662.
    [47]
    MIAO H, CHEN B, LI S, et al. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte[J]. J Power Sources,2020,450:227653. doi: 10.1016/j.jpowsour.2019.227653
    [48]
    ZAMANI-MEYMIAN M R, KHANMOHAMMADI C K, POURZOLFAGHAR H. Designing high-quality electrocatalysts based on CoO: MnO2@C supported on carbon cloth fibers as bifunctional air cathodes for application in rechargeable Zn-Air battery[J]. ACS Appl Mater Interfaces,2022,14(50):55594−55607. doi: 10.1021/acsami.2c16826
    [49]
    YE Y, ZHANG L, ZHU Q, et al. Interface engineering induced charge rearrangement boosting reversible oxygen electrocatalysis activity of heterogeneous FeCo-MnO@N-doped carbon nanobox[J]. J Colloid Interf Sci,2023,650:1350−1360. doi: 10.1016/j.jcis.2023.07.101
    [50]
    HU T, ZHANG W, XIA Z, et al. Growth restriction of Co3O4 nanoparticles by α-MnO2 nanorods as air cathode catalyst for rechargeable aluminum-air battery[J]. Int J Energy Res,2022,46(8):11174−11184. doi: 10.1002/er.7917
    [51]
    PENG L, PENG X, ZHU Z, et al. Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. Int J Hydrogen Energy,2023,48(50):19126−19136. doi: 10.1016/j.ijhydene.2023.01.263
    [52]
    CHEN S, HUANG Y, LI M, et al. MnOx anchored on N and O co-doped carbon nanotubes encapsulated with FeCo alloy as highly efficient bifunctional electrocatalyst for rechargeable Zinc-Air batteries[J]. J Electroanal Chem,2021,895:115513. doi: 10.1016/j.jelechem.2021.115513
    [53]
    LU J, WANG H, SUN Y, et al. Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting[J]. Chem Eng J,2021,417:127894. doi: 10.1016/j.cej.2020.127894
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (280) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return