Volume 52 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LIU Xueyan, TAN Wenwen, WANG Jingru, ZHANG Ru, XU Longjun, LIU Chenglun. Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074
Citation: LIU Xueyan, TAN Wenwen, WANG Jingru, ZHANG Ru, XU Longjun, LIU Chenglun. Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074

Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS

doi: 10.19906/j.cnki.JFCT.2023074
Funds:  The project was supported by National Natural Science Foundation of China (52174157).
  • Received Date: 2023-07-09
  • Accepted Date: 2023-09-19
  • Rev Recd Date: 2023-09-19
  • Available Online: 2023-10-12
  • Publish Date: 2024-03-10
  • Constructing S-scheme heterojunction is an effective strategy to form photocatalytic materials with strong reduction property and improve photocatalytic performance. In this paper, NiTiO3/CdS photocatalytic materials with S-scheme heterostructures were prepared by a simple hydrothermal method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area analysis and Ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS). The hydrogen production performance was tested by the photocatalytic hydrogen production experiment from shale gas flowback water. The results showed that NiTiO3 and CdS were successfully compounded. In addition, 15% NiTiO3/CdS showed the optimum hydrogen production performance (1568.9 µmol/(g·h)), and excellent recycling potential. This work is of great significance for the exploration of efficient and stable photocatalysts with S-scheme heterojunctions, the efficient utilization of wastewater and the alleviation of energy shortages.
  • loading
  • [1]
    郭扬. 世界视域下新能源替代化石能源的驱动效应[J]. 中国人口·资源与环境,2022,32(5):14−22.

    GUO Yang. Driving effects of alternative new energy sources for fossil fuels in the context of the world[J]. China Popul, ResEnviron,2022,32(5):14−22.
    [2]
    李亮荣, 杨小喆, 陈楚欣, 等. 半导体核壳材料光催化剂分解水制氢研究进展[J]. 无机盐工业,2023,55(3):10−20.

    LI Liangrong, YANG Xiaozhe, CHEN Chuxin, et al. Research progress of photocatalytic water splitting of semiconductor core-shell materials for hydrogen production[J]. Inorg Chem Ind,2023,55(3):10−20.
    [3]
    柴麒敏, 郭虹宇, 刘昌义, 等. 全球气候变化与中国行动方案——“十四五”规划期间中国气候治理(笔谈)[J]. 阅江学刊,2020,12(6):36−58.

    CHAI Qimin, GUO Hongyu, LIU Changyi, et al. Global climate change and China's action scheme: climate governance of China in the 14th five-year plan period from 2021 to 2025 (conversation by writing)[J]. Yuejiang Acad J,2020,12(6):36−58.
    [4]
    LAKHERA S K, RAJAN A, RUGM T P, et al. A review on particulate photocatalytic hydrogen production system: progress made in achieving high energy conversion efficiency and key challenges ahead[J]. Renewable Sustainable Energy Rev,2021,152:111694. doi: 10.1016/j.rser.2021.111694
    [5]
    安攀, 张庆慧, 杨状, 等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报,2022,80(12):1629−1642. doi: 10.6023/A22080362

    AN Pan, ZHANG Qinghui, YANG Zhuang, et al. Research progress of photocatalytic water splitting for hydrogen production using MOF based catalysts[J]. Acta Chim Sin,2022,80(12):1629−1642. doi: 10.6023/A22080362
    [6]
    WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [7]
    JI G, XU X, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [8]
    张文超. 采用零价铁/过硫酸盐体系对页岩气返排液废水处理的研究[J]. 四川化工,2020,23(1):54−58.

    ZHANG Wenchao. Study on the treatment of shale gas flowback wastewater by zero-valent iron/persulfate system[J]. Sichuan Chem Ind,2020,23(1):54−58.
    [9]
    于建国, 韩昫身, 金艳. 页岩气压裂返排液生物处理技术研究进展[J]. 石油与天然气化工,2022,51(5):131−138.

    YU Jianguo, HAN Xushen, JIN Yan. Biological treatment of shale gas flowback and produced watew: A review[J]. Chem Eng Oil Gas,2022,51(5):131−138.
    [10]
    黄飞, 陈湘萍, 杨和平. 页岩气压裂返排液处理工艺研究[J]. 环境科学与技术,2013,36(S1):174−176.

    HUANG Fei, CHEN Xiangping, YANG Heping. The research of treatment process about fracturing flowback fluid in shale gas mining[J]. Environ Sci Technol,2013,36(S1):174−176.
    [11]
    董刚, 陈锐. 页岩气压裂返排液处理技术研究进展[J]. 化学工程师,2023,37(4):73−78.

    DONG Gang, CHEN Rui. Application progress of shale gas fracturing flowback fluid treatment technology[J]. Chem Eng,2023,37(4):73−78.
    [12]
    蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J/OL]. 燃料化学学报(中英文), 2023, 51(1): 34–51.

    JIANG Zao, XU Longjun, LIU Chenlun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater [J/OL]. J Fuel Chem Technol, 2023, 51(1): 34–51.
    [13]
    ABDULLAH U, ALI M, PERVAIZ E. An inclusive review on recent advancements of cadmium sulfide nanostructures and its hybrids for photocatalytic and electrocatalytic applications[J]. Mol Catal,2021,508:111575. doi: 10.1016/j.mcat.2021.111575
    [14]
    LIU S, MA Y, CHI D, et al. Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater[J]. Int J Hydrogen Energy,2022,47(15):9220−9229. doi: 10.1016/j.ijhydene.2021.12.259
    [15]
    CHEN L, XIE X, SU T, et al. Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co−S bond as a bridge for electron transfer[J] Appl Surf Sci, 2021, 567: 150849.
    [16]
    MA W, ZHENG D, XIAO B, et al. An efficient photocatalytic system under visible light: In-situ growth cocatalyst Ni2P on the surface of CdS[J]. J Environ Chem Eng,2022,10(3):107822. doi: 10.1016/j.jece.2022.107822
    [17]
    JIANG K, JUNG H, PHAM T, et al. Modification of NiTiO3 visible light-driven photocatalysts by Nb doping and NbOx heterojunction: Oxygen vacancy in the Nb-doped NiTiO3 structure[J]. J Alloys Compd,2021,861:158636. doi: 10.1016/j.jallcom.2021.158636
    [18]
    LI H, WANG G, GONG H, et al. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution[J]. J Phys Chem C,2021,125(1):648−659. doi: 10.1021/acs.jpcc.0c10239
    [19]
    YAN T, LIU H, JIN Z. Graphdiyne based ternary GD-Cul-NiTiO3 S-scheme heterjunction photocatalyst for hydrogen evolution[J]. ACS Appl Mater Interfaces,2021,13(21):24896−24906. doi: 10.1021/acsami.1c04874
    [20]
    ALAM U, PANDEY A, VERMA N. An anthraquinone-integrated S-scheme-based NiTiO3-g-C3N4 composite with enhanced hydrogen production activity[J]. Int J Hydrogen Energy,2023,48(7):2532−2541. doi: 10.1016/j.ijhydene.2022.10.151
    [21]
    HU M, SHU J, XU L, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energy,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
    [22]
    GOMATHISANKAR P, HACHISUKA K, KATSUMATA H, et al. Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu[J]. Int J Hydrogen Energy,2013,38(27):11840−11846. doi: 10.1016/j.ijhydene.2013.06.131
    [23]
    LIU X, SHU J, WANG H, et al. One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. J Phys Chem Solids,2023,172:111061. doi: 10.1016/j.jpcs.2022.111061
    [24]
    QU Y, ZHOU W, JIANG L, et al. Novel heterogeneous CdS nanoparticles/NiTiO3 nanorods with enhanced visible-light-driven photocatalytic activity[J]. RSC Adv,2013,3(40):18305−18310. doi: 10.1039/c3ra42189a
    [25]
    FENG C, CHEN Z, HOU J, et al. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light[J]. Chem Eng J,2018,345:404−413. doi: 10.1016/j.cej.2018.03.155
    [26]
    DHINGRA S, SHARMA M, KRISHNAN V, et al. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2, 5-Bis(hydroxymethyl)furan[J]. J Colloid Interface Sci,2022,615:346−356. doi: 10.1016/j.jcis.2022.01.190
    [27]
    ZOU Y, GUO C, CAO X, et al. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution[J]. J Environ Chem Eng,2021,9(6):106270. doi: 10.1016/j.jece.2021.106270
    [28]
    WANG L, CHENG, ZHANG L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small,2021,17(41):2103447. doi: 10.1002/smll.202103447
    [29]
    JIANG Z, XIAO C, YIN X, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
    [30]
    XU J, WANG L, CAO X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light[J]. Chem Eng J,2016,283:816−825. doi: 10.1016/j.cej.2015.08.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (122) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return