Turn off MathJax
Article Contents
LIU Tianlong, LI Qi, LI Zhonghong, YANG Peiyan, PANG Xinbo, HUANG Xin, ZHAO Xiaoyan, Cao Jingpei. Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023082
Citation: LIU Tianlong, LI Qi, LI Zhonghong, YANG Peiyan, PANG Xinbo, HUANG Xin, ZHAO Xiaoyan, Cao Jingpei. Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023082

Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid

doi: 10.19906/j.cnki.JFCT.2023082
Funds:  The project was supported by the National Natural Science Foundation of China (22108294), the China Postdoctoral Science Foundation (2021M693412), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Shccig-Qinling Program.
  • Received Date: 2023-12-04
  • Accepted Date: 2023-12-13
  • Rev Recd Date: 2023-12-13
  • Available Online: 2024-01-18
  • The sophisticated multi-components and densed cross-link chemical structures of lignocellulosic biomass are important bottlenecks restricting its value-added utilization. The pre-fractionation of lignocellulose components is of great significance for the fractional conversion of biomass. The present study subjected rice husk (RH) to hydrothermal treatment in a flowthrough mode and investigated the effects of hydrothermal temperature and water flowrate on the decomposition rate of RH, chemical components of residual solids and their pyrolysis characteristics. It is shown that the decomposition of RH under hydrothermal conditions conformed well to the unreacted shrinking core model with phase boundary reactions rate-controlling. The pretreatment at 180 ℃ removed 95% alkali and alkaline-earth metallic species, 92% hemicellulose and 59% lignin from RH and selectively retained most of the cellulose components. As a result of the pretreatment, the relative content of anhydrosugar (mainly levoglucosan) from pyrolysis of RH at a curie-point temperature of 445 ℃ was increased from 9.9% up to 48.2%.
  • loading
  • [1]
    ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev,2010,110(6):3552−99. doi: 10.1021/cr900354u
    [2]
    蒋叶涛, 宋晓强, 孙勇, 等. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展,2017,29(10):1273−1284.

    JIANG Yetao, SONG Xiaoqiang, SUN Yong, et al. Strategies of prior-fractionation for the graded utilization of lignocellulose[J]. Prog Chem.,2017,29(10):1273−1284.
    [3]
    KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [4]
    BACH Q V, TRAN K Q, KHALIL R A, et al. Comparative assessment of wet torrefaction[J]. Energy Fuels,2013,27(11):6743−6753. doi: 10.1021/ef401295w
    [5]
    CHANG S, ZHAO Z, ZHENG A, et al. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor[J]. Bioresour Technol,2013,138:321−328. doi: 10.1016/j.biortech.2013.03.170
    [6]
    YU Q, ZHUANG X, YUAN Z, et al. Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery[J]. Appl Energy,2011,88(7):2472−2479. doi: 10.1016/j.apenergy.2011.01.031
    [7]
    FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuel Bioprod Biorefin,2010,4(2):160−177. doi: 10.1002/bbb.198
    [8]
    SOLAR J, DE MARCO I, CABALLERO B M, et al. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor[J]. Biomass Bioenergy,2016,95:416−423. doi: 10.1016/j.biombioe.2016.07.004
    [9]
    YUAN X Z, TONG J Y, ZENG G M, et al. Comparative studies of products obtained at different temperatures during straw liquefaction by hot compressed water[J]. Energy Fuels,2009,23:3262−3267. doi: 10.1021/ef900027d
    [10]
    LENG L, ZHOU W. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of wet biomass: A review[J]. Energy Sources, Part A,2018,40(22):2648−2659. doi: 10.1080/15567036.2018.1495780
    [11]
    余强, 庄新姝, 袁振宏, 等. 高温液态水中甜高粱渣半纤维素水解及其机理[J]. 化工学报,2012,63(2):599−605. doi: 10.3969/j.issn.0438-1157.2012.02.037

    YU Qiang, ZHUANG Xinshu, YUAN Zhenhong, et al. Hydrolysis of sweet sorghum bagasse hemicellulose with liquid hot water and its mechanism[J]. CIESC J,2012,63(2):599−605. doi: 10.3969/j.issn.0438-1157.2012.02.037
    [12]
    于建国, 姜罗, 刘李, 等. 亚熔盐低温浸取钾长石工艺过程[J]. 华东理工大学学报(自然科学版),2019,45(2):206−215. doi: 10.14135/j.cnki.1006-3080.20180322001

    YU Jianguo, JIANG Luo, LIU Li, et al. Leaching process of potassium feldspar by sub-molten salt at low temperature[J]. J East China Univ Sci Technol,2019,45(2):206−215. doi: 10.14135/j.cnki.1006-3080.20180322001
    [13]
    NIU Y, LV Y, LEI Y, et al. Biomass torrefaction: Properties, applications, challenges, and economy[J]. Renewable Sustainable Energy Rev,2019,115:1−18.
    [14]
    GüLEç F, RIESCO L M G, WILLIAMS O, et al. Hydrothermal conversion of different lignocellulosic biomass feedstocks-Effect of the process conditions on hydrochar structures[J]. Fuel,2021,302:1−18.
    [15]
    BACH Q V, TRAN K Q, SKREIBERG Ø. Comparative study on the thermal degradation of dry- and wet-torrefied woods[J]. Appl Energy,2017,185:1051−1058. doi: 10.1016/j.apenergy.2016.01.079
    [16]
    LIANG Y G, CHENG B, SI Y B, et al. Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis[J]. Renew Energy,2014,68:111−117. doi: 10.1016/j.renene.2014.01.041
    [17]
    TEKIN K, KARAGöZ S, BEKTAŞ S. A review of hydrothermal biomass processing[J]. Renewable Sustainable Energy Rev,2014,40:673−687. doi: 10.1016/j.rser.2014.07.216
    [18]
    ZHANG B, ZHONG Z, MIN M, et al. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study[J]. Bioresour Technol,2015,189:30−35. doi: 10.1016/j.biortech.2015.03.092
    [19]
    XIN X, PANG S, DE MIGUEL MERCADER F, et al. The effect of biomass pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal component analysis[J]. J Anal Appl Pyrolysis,2019,138:145−153. doi: 10.1016/j.jaap.2018.12.018
    [20]
    PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol,2010,101(12):4646−4655. doi: 10.1016/j.biortech.2010.01.112
    [21]
    WANG K, ZHANG J, SHANKS B H, et al. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation[J]. Appl Energy,2015,148:115−120. doi: 10.1016/j.apenergy.2015.03.034
    [22]
    DALLUGE D L, KIM K H, BROWN R C. The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin[J]. J Anal Appl Pyrolysis,2017,127:385−393. doi: 10.1016/j.jaap.2017.07.011
    [23]
    LIN Y C, CHO J, TOMPSETT G A, et al. Kinetics and mechanism of cellulose pyrolysis[J]. J Phys Chem C,2009,113(46):20097−20107. doi: 10.1021/jp906702p
    [24]
    VAMVUKA D, TROULINOS S, KASTANAKI E. The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials[J]. Fuel,2006,85(12/13):1763−71. doi: 10.1016/j.fuel.2006.03.005
    [25]
    KANIOWSKI W, TALER J, WANG X, et al. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers[J]. Fuel,2022,326:1−11.
    [26]
    WANG W, MARTIN J C, FAN X, et al. Silica nanoparticles and frameworks from rice husk biomass[J]. ACS Appl Mater Interfaces,2012,4(2):977−981. doi: 10.1021/am201619u
    [27]
    CHEN H, WANG W, MARTIN J C, et al. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass[J]. ACS Sustainable Chem Eng,2012,1(2):254−259.
    [28]
    BAKAR R A, YAHYA R, GAN S N. Production of high purity amorphous silica from rice husk[J]. Proced Chem,2016,19:189−195. doi: 10.1016/j.proche.2016.03.092
    [29]
    BENJAMIN IYENAGBE U, MAMAT O. Hydro thermo-baric processing and properties of nano silica from rice husk[J]. Appl Mech Mater,2012,152−154:177−182.
    [30]
    UMEDA J, KONDOH K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal[J]. Ind Crop Prod,2010,32(3):539−544. doi: 10.1016/j.indcrop.2010.07.002
    [31]
    WANG W, LEMAIRE R, BENSAKHRIA A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. J Anal Appl Pyrolysis,2022,163:1−33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return