Volume 46 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
ZHUANG Xiu-zheng, ZHAN Hao, HUANG Yan-qin, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 940-949.
Citation: ZHUANG Xiu-zheng, ZHAN Hao, HUANG Yan-qin, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 940-949.

Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes

Funds:

the National Key R & D Project 2016YFE0203300

the Guangdong Natural Science Foundation 2017B030308002

More Information
  • Corresponding author: YIN Xiu-li, E-mail: xlyin@ms.giec.ac.cn
  • Received Date: 2018-02-06
  • Rev Recd Date: 2018-06-14
  • Available Online: 2021-01-23
  • Publish Date: 2018-08-10
  • Based on two kinds of biowastes (penicillin mycelia waste, PMW; herbal tea waste, HTW), the difference of biowastes derived from various sources and their fuel characteristics and combustion behavior after hydrothermal upgrading were investigated with the assistance of XPS, TGA and FTIR analyses. The results show that HTW mainly contains lignocelluloses, while PMW mostly consists of protein and polysaccharides. Although the specific conversion paths of various components are slightly different during hydrothermal process, both the higher heating values (HHV) of biowastes are improved (HTW:from 19.4 to 26.2 MJ/kg; PMW:from 19.1 to 29.3 MJ/kg); meanwhile, the coalification degree of biowastes increases with the growing temperature, even reaching the degree of bituminite at 300℃. In addition, the variation in carbon content and structure reflects that the reaction of devolatilization and aromatization during hydrothermal process can improve not only the fuel characteristics but also the combustion behavior.
  • loading
  • [1]
    许光文, 纪文峰, 刘周恩, 万印华, 张小勇.轻工生物质过程残渣高值化利用必要性与技术路线分析[J].过程工程学报, 2009, 9(3):618-624. http://www.cqvip.com/qk/94710A/200903/30985170.html

    XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua. ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass proces residue in light industry[J]. Chin J Process Eng, 2009, 9(3):618-624. http://www.cqvip.com/qk/94710A/200903/30985170.html
    [2]
    ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016, 206:93-98. doi: 10.1016/j.biortech.2016.01.075
    [3]
    詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财, 袁洪友, 吴创之.抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J].燃料化学学报, 2017, 45(10):1219-1229. doi: 10.3969/j.issn.0253-2409.2017.10.009

    ZHAO Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai, YUAN Hong-you, WU Chuang-zhi. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol, 2017, 45(10):1219-1229. doi: 10.3969/j.issn.0253-2409.2017.10.009
    [4]
    詹昊, 阴秀丽, 黄艳琴, 张晓鸿, 袁洪友, 谢建军, 吴创之.药渣热解过程NOx前驱物生成特征及规律研究[J].燃料化学学报, 2017, 45(3):279-288. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18990.shtml

    ZHAO Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol, 2017, 45(3):279-288. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18990.shtml
    [5]
    张光义, 马大朝, 彭翠娜, 许光文.水热处理抗生素菌渣制备固体生物燃料[J].化工学报, 2013, 64(10):3741-3749. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201310035

    ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. J Chem Ind Eng, 2013, 64(10):3741-3749. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201310035
    [6]
    庄修政, 黄艳琴, 阴秀丽, 吴创之.污泥水热处理制备清洁燃料的研究进展[J].化工进展, 2018, 37(1):311-318. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGX201219010.htm

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018, 37(1):311-318. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGX201219010.htm
    [7]
    ZHUANG X Z, HUANG Y Q, LIU H C, YUAN H Y, YIN X L, WU C Z. Relationship between physicochemical properties and dewaterability of hydrothermal sludge derived from different source[J]. J Environ Sci, 2018, 69:261-270. doi: 10.1016/j.jes.2017.10.021
    [8]
    庄修政, 黄艳琴, 阴秀丽, 吴创之.基于响应面法优化污泥燃料的水热制备工艺[J].新能源进展, 2017, 5(5):325-332. http://www.cnki.com.cn/Article/CJFDTotal-LYKE201411016.htm

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Optimization of hydrothermal process for solid fuel derived from sewage sludge by response surface methodology[J]. Adv New Renew Energy, 2017, 5(5):325-332. http://www.cnki.com.cn/Article/CJFDTotal-LYKE201411016.htm
    [9]
    ZHAO P T, SHEN Y F, GE S F, CHEN Z Q, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy, 2014, 131:345-367. doi: 10.1016/j.apenergy.2014.06.038
    [10]
    MA D C, ZHANG G Y, ZHAO P T, AREEPRASERT C, SHEN Y F, YOSHIKAWA K, XU G W. Hydrothermal treatment of antibiotic mycelial dreg:More understanding from fuel characteristics[J]. Chem Eng J, 2015, 273:147-155. doi: 10.1016/j.cej.2015.01.041
    [11]
    GAO Y, WANG X H, WANG J, LI X P, CHENG J J, YANG H P, CHEN H P. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy, 2013, 58:376-383. doi: 10.1016/j.energy.2013.06.023
    [12]
    HE C, ZHAO J, YANG Y H, WANG J Y. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub-and near-critical water[J]. Bioresour Technol, 2016, 211:486-493. doi: 10.1016/j.biortech.2016.03.110
    [13]
    ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017, 245:463-470. doi: 10.1016/j.biortech.2017.08.195
    [14]
    BALAT M. Mechanisms of thermochemical biomass conversion processes. Part 1:Reactions of pyrolysis[J]. Energy Source Part A, 2008, 30(7):620-635. doi: 10.1080/15567030600817258
    [15]
    AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable Sustainable Energy Rev, 2011, 15(3):1615-1624. doi: 10.1016/j.rser.2010.11.054
    [16]
    CHANGI S M, FAETH J L, MO N, SAVAGE P E. Hydrothermal reactions of biomolecules relevant for microalgae liquefaction[J]. Ind Eng Chem Res, 2015, 54(47):11733-11758. doi: 10.1021/acs.iecr.5b02771
    [17]
    SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016, 169:135-145. doi: 10.1016/j.fuel.2015.12.006
    [18]
    HE C, WANG K, GIANNIS A, YANG Y H, WANG J Y. Products evolution during hydrothermal conversion of dewatered sewage sludge in sub-and near-critical water:Effects of reaction conditions and calcium oxide additive[J]. Int J Hydrogen Energy, 2015, 40(17):5776-5787. doi: 10.1016/j.ijhydene.2015.03.006
    [19]
    SABIO E, ALVAREZ-MURILLO A, ROMAN S, LEDESMA B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization:Influence of the processing variables[J]. Waste Manage, 2016, 47:122-132. doi: 10.1016/j.wasman.2015.04.016
    [20]
    MURSITO A T, HIRAJIMA T, SASAKI K. Upgrading and dewatering of raw tropical peat by hydrothermal treatment[J]. Fuel, 2010, 89(3):635-641. doi: 10.1016/j.fuel.2009.07.004
    [21]
    HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:Hydrochar fuel characteristics and combustion behavior[J]. Appl Energy, 2013, 111:257-266. doi: 10.1016/j.apenergy.2013.04.084
    [22]
    HE C, WANG K, YANG Y H, WANG J Y. Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals:Effects of subcritical water conversion and blending scenarios[J]. Energy Fuels, 2014, 28(9):6140-6150. doi: 10.1021/ef501386g
    [23]
    PENG C, ZHAI Y B, ZHU Y, XU B B, WANG T F, LI C T, ZENG G M. Production of char from sewage sludge employing hydrothermal carbonization:Char properties, combustion behavior and thermal characteristics[J]. Fuel, 2016, 176:110-118. doi: 10.1016/j.fuel.2016.02.068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return