Volume 46 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Hong-guang, FENG Li-juan, LI Chun-hu, WANG Liang. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 871-878.
Citation: ZHANG Hong-guang, FENG Li-juan, LI Chun-hu, WANG Liang. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 871-878.

Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light

Funds:

the State Key Laboratory of Heavy Oil Processing MCTL contribution NO.137

More Information
  • Corresponding author: WANG Liang, Tel:0532-66782502, E-mail:wangliang_good@163.com
  • Received Date: 2018-04-02
  • Rev Recd Date: 2018-06-12
  • Available Online: 2021-01-23
  • Publish Date: 2018-07-10
  • Various graphitic carbon nitride (g-C3N4) materials having nitrogen defects were synthesized by adding NaHCO3 during the thermal polymerization of melamine. The as-prepared g-C3N4 samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption-desorption, X-ray photoelectron spectroscopy (XPS), UV-visual diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence spectroscopy (PL); their photocatalytic activity in the degradation of Rhodamine B (RhB) under visible light irradiation was investigated. The results demonstrated that the unique nitrogen defects in g-C3N4 play an important role in broadening the absorption of visible light and enhancing the separation of electron-hole pairs. The photocatalytic activity of g-C3N4 with nitrogen defects is enhanced greatly; the RhB removal rates over the CNK0.005, CNK0.01, and CNK0.05 photocatalysts in 30 min reach 79.8%, 100.0% and 87.6%, respectively. In contrast, the pristine g-C3N4 free of nitrogen defects only gives an RhB degration rate of 59.8% under the same reaction conditions.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    LU J, WANG Y, HUANG J, CAO L Y, LI J Y, HAI G J, BAI Z. One-step synthesis of g-C3N4, hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity[J]. Mater Sci Eng B, 2016, 214:19-25. doi: 10.1016/j.mseb.2016.08.003
    [2]
    LIU Y, ZHANG H, LU Y F, WU J, XIN B F. A simple method to prepare g-C3N4/Ag-polypyrrole composites with enhanced visible-light photocatalytic activity[J]. Catal Commun, 2016, 87(5):41-44. http://www.sciencedirect.com/science/article/pii/S1566736716303120
    [3]
    IQBALA W, WANG L Z, TAN X J, ZHANG J L. One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity[J]. J Environ Chem Eng, 2017, 5(4):3500-3507. doi: 10.1016/j.jece.2017.07.011
    [4]
    HAO R R, WANG G H, TANG H, SUN L L, XU C, HAN D Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2, heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Appl Catal B:Environ, 2016, 187(15):47-58. http://www.sciencedirect.com/science/article/pii/S0926337316300273
    [5]
    SHI X W, Fujitsuka M, LOU Z Z, ZHANG P, Majima T. In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalyst with efficient charge separation boosting water reduction under visible light[J]. J Mater Chem, A, 2017, 5(20):9671-9681. doi: 10.1039/C7TA01888F
    [6]
    CHEN X, CHEN H L, GUAN J, ZHEN J M, SUN Z J, DU P W, LU Y L, YANG S F. A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production[J]. Nanoscale, 2017, 9(17):5615-5623. doi: 10.1039/C7NR01237C
    [7]
    HE Y M, CAI J, LI T T, WU Y, LIN H J, ZHAO L H, LUO M F. Efficient degradation of RhB over GdVO4/g-C3N4, composites under visible-light irradiation[J]. Chem Eng J, 2013, 215/216:721-730. doi: 10.1016/j.cej.2012.11.074
    [8]
    LI K, XIE X, ZHANG W D. Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution[J]. Carbon, 2016, 110:356-366. doi: 10.1016/j.carbon.2016.09.039
    [9]
    LU D Z, WANG H M, ZHAO X N, Kondamareddy K K, DING J Q, LI C H, FANG P F. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. Acs Sustainable Chem Eng, 2017, 5(11):1436-1445. http://www.researchgate.net/publication/312426080_Highly_Efficient_Visible-Light-Induced_Photoactivity_of_Z-Scheme_g-C_3_N_4_AgMoS_2_Ternary_Photocatalysts_for_Organic_Pollutant_Degradation_and_Production_of_Hydrogen
    [10]
    LI J Q, YUAN H, ZHU Z F. Photoelectrochemical performance of g-C3N4/Au/BiPO4 Z-scheme composites to improve the mineralization property under solar light[J]. Rsc Adv, 2016, 6(74):70563-70572. doi: 10.1039/C6RA13570F
    [11]
    YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017, 396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219
    [12]
    LIANG S J, XIA Y Z, ZHU S Y, ZHENG S, HE Y H, BI J H, LIU M H, WU L. Au and Pt co-loaded g-C3N4, nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation[J]. Appl Surf Sci, 2015, 358:304-312. doi: 10.1016/j.apsusc.2015.08.035
    [13]
    TIAN Y M, GE L, WANG K Y, CHAI Y S. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Mater Charact, 2014, 87:70-73. doi: 10.1016/j.matchar.2013.10.020
    [14]
    WENG S X, HU J, LU M L, YE X X, PEI Z X, HUANG M L, XIE L Y, LIN S, LIU P. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity:A probe to disclose the charge transfer in BiOCl (010)/surface-complex system[J]. Appl Catal B:Environ, 2015, 163:205-213. doi: 10.1016/j.apcatb.2014.07.051
    [15]
    HONG Z H, SHEN B, CHEN Y L, LIN B Z, GAO B F. Enhancement of photocatalytic H2 evolution over nitrogen-deficient graphitic carbon nitride[J]. J Mater Chem A, 2013, 1(38):11754-11761. doi: 10.1039/c3ta12332d
    [16]
    NIU P, YIN L C, YANG Y Q, LIU G, CHENG H M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Adv Mater, 2014, 26(47):8046-8052. doi: 10.1002/adma.v26.47
    [17]
    YU H J, SHI R, ZHAO Y X, BIAN T, ZHAO Y F, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C H, ZHANG T R[J]. Potocatalysis:Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible light-driven hydrogen evolution[J]. Adv Mater, 2017, 29(16):5148-5154. http://europepmc.org/abstract/MED/28185339
    [18]
    WU M, YAN J M, ZHANG X W, ZHAO M. Synthesis of g-C3N4with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution[J]. Appl Surf Sci, 2015, 354(2):196-200. http://www.sciencedirect.com/science/article/pii/S0169433215001579
    [19]
    SHANG Y Y, MA Y J, CHEN X, XIONG X, PAN J. Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride[J]. Mol Catal, 2017, 433:128-135. doi: 10.1016/j.mcat.2016.12.021
    [20]
    CHIDHAMBARAM N, RAVICHANDRAN K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications[J]. Mater Lett, 2017, 207:44-48. doi: 10.1016/j.matlet.2017.07.040
    [21]
    CHEN H, YAO J H, QIU P X, XU C M, JIANG F, WANG X. Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2017, 91:42-48. doi: 10.1016/j.materresbull.2017.02.042
    [22]
    ZHENG Y, ZHANG Z S, LI C H, PROULX S. Surface hydroxylation of graphitic carbon nitride:Enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2016, 84:46-56. doi: 10.1016/j.materresbull.2016.07.003
    [23]
    WANG X J, TIAN X, LI F T, LI Y P, ZHAO J, HAO Y J, LIU Y. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency[J]. Int J Hydrogen Energy, 2016, 41(6):3888-3895. doi: 10.1016/j.ijhydene.2016.01.004
    [24]
    ZHENG Y, ZHANG Z S, LI C H. Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst[J]. J Mol Catal A:Chem, 2016, 423:463-471. doi: 10.1016/j.molcata.2016.07.032
    [25]
    MAO M M, CHEN F, ZHENG C C, NING J Q, ZHONG Y J, HU Y. Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol[J]. J Alloys Compd, 2016, 688:1080-1087. doi: 10.1016/j.jallcom.2016.07.128
    [26]
    MA X J, LI X R, LI M M, MA X C, YU L, DAI Y. Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite[J]. Appl Surf Sci, 2017, 414:124-130. doi: 10.1016/j.apsusc.2017.04.019
    [27]
    SUN Y J, ZHANG W D, XIONG T, ZHAO Z W, DONG F, WANG R Q, HO W K. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. J Colloid Interface Sci, 2014, 418:317-323. doi: 10.1016/j.jcis.2013.12.037
    [28]
    LI H, ZHANG T X, PAN C, PU C C, HU Y, HU X Y, LIU E Z, FAN J. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities[J]. Appl Surf Sci, 2017, 391:303-310. doi: 10.1016/j.apsusc.2016.06.167
    [29]
    HOFFMANN M R, MARTIN S T, CHOI W Y, BAHNEMANN D W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1):69-96. doi: 10.1021/cr00033a004
    [30]
    DING J, XU W, WAN H, YUAN D S, CHEN C, WANG L, GUAN G F, DAI W L. Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Appl Catal B:Environ, 2018, 221:626-634. doi: 10.1016/j.apcatb.2017.09.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return