Volume 47 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption equilibrium of methane on layered graphene sheets and activated carbon[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1008-1015.
Citation: ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption equilibrium of methane on layered graphene sheets and activated carbon[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 1008-1015.

Adsorption equilibrium of methane on layered graphene sheets and activated carbon

Funds:

the Science and Technology Bureau of Xiamen 3502Z20173026

More Information
  • Corresponding author: ZHENG Qing-rong, Tel: 0592-6183533, Fax: 0592-6180332, E-mail: zhengqr@jmu.edu.cn
  • Received Date: 2019-04-09
  • Rev Recd Date: 2019-06-03
  • Available Online: 2021-01-23
  • Publish Date: 2019-08-10
  • In order to develop a new kind of adsorbent for the storage of natural gas by adsorption, the activated carbon SAC-01 and the layered graphene GS(3D), which have a specific surface area about 2062 m2/g and 1507 m2/g, respectively, were comparatively studied as per adsorption equilibrium data measured at the temperature of 283.15-303.15 K and the pressure of 0-10 MPa. The pore size distribution (PSD) and BET specific surface area of the GS(3D) and the activated carbon were firstly determined by analyzing adsorption isotherms of nitrogen at 77.15 K through Horvath-Kawazoe equation calculation. The Henry law constant was used to calculate the limit isosteric heat of methane adsorption in correspondence with the low surface coverage, the interaction potentials between methane molecule and the surface of two adsorbents were then plotted by employing Virial equation and 10-4-3 potential function. The adsorption data, which were volumetrically measured under high pressures, were correlatively fitted by Langmuirian equations through nonlinear regression. Toth equation with the highest accuracy in predicting adsorption data was then used to calculate the absolute adsorption amount, which was finally employed to calculate the isosteric heat of adsorption via Clausius-Clapeyron equation. The result shows that the limit isosteric heat of methane adsorption on the GS(3D) and the activated carbon is about 23.07 and 20.67 kJ/mol, respectively, and the corresponding interaction potential εsf/k between methane molecule and the GS(3D) or the activated carbon is about 67.19 and 64.23 K at temperature 283.15 K, respectively, which are similar to 64.60 K determined by Lorenz-Berthelot mixing law. The accumulated relative error of the Toth equation for predicting the adsorption equilibrium of methane on the activated carbon and GS(3D) is 0.25% and 2.29%, respectively, and the mean isosteric heat of methane adsorption on the GS(3D) and the activated carbon is about 18.3 and 16.8 kJ/mol, respectively. It suggests that the GS (3D) with a larger specific surface area and micro-pore volume takes more advantages in methane adsorption in comparing with the activated carbon.
  • loading
  • [1]
    YAN Y, KOLOKOLOV D I, SILVA I D, STEPANOV A G, BLAKE A J, DAILLY A, MANUEL P, TANG C C, YANG S H, SCHRÖDER M. Porous metal-organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage[J]. Am Chem Soc, 2017, 139:13349-13360. doi: 10.1021/jacs.7b05453
    [2]
    WALKER N R, WISSINK M L, DEL V D A, REITZ R D. Natural gas for high load dual-fuel reactivity controlled compression ignition in heavy-duty engines[J]. J Energy Resour Technol Trans ASME, 2015, 137(4), Article number:042202.
    [3]
    EDUARDO F S A, FABIO B N, ARNALDO JR F. The main catalytic challenges in GTL(gas-to-liquids) processes[J]. Catal Sci Technol, 2011, 1(5):5698-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9823f5c8a08852f5ec0dc5063168d971
    [4]
    KUMAR K V, PREUSS K, TITIRICI M M, RODRǏGUEZ-REINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev, 2017, 117(3):1796-1825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea466680693db849047c47a7dd89d919
    [5]
    BAGHERI N, ABEDI J. Adsorption of methane on corn cobs based activated carbon[J]. Chem Eng Res Des, 2011, 89(10):2038-2043. doi: 10.1016/j.cherd.2011.02.002
    [6]
    BYAMBA-OCHIR N, WANG G S, BALATHANIGAIMANI M S, MOON H. High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption[J]. Appl Energy, 2017, 190:257-265. doi: 10.1016/j.apenergy.2016.12.124
    [7]
    JIA Z, LI H, YU Z, WANG P, FAN X L. Densification of MOF-5 synthesized at ambient temperature for methane adsorption[J]. Mater Lett, 2011, 65(15):2445-2447. https://www.sciencedirect.com/science/article/abs/pii/S0167577X11004903
    [8]
    MORRIS R E, WHEATLEY P S. Gas storage in nanoporous materials[J]. Angew Chem, 2008, 47(27):4966-4981. doi: 10.1002/anie.v47:27
    [9]
    KIM S Y, KIM A R, YOON J W, KIM H J, BAE Y S. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake[J]. Chem Eng J, 2018, 335:94-100. doi: 10.1016/j.cej.2017.10.078
    [10]
    SHAYEGANFAR F, NEEK-AMAL M. Methane molecule over the defected and rippled graphene sheet[J]. Solid State Commun, 2012, 152(15):1493-1496. doi: 10.1016/j.ssc.2012.04.049
    [11]
    YANG D G, YANG N, NI J M, JING X, JIANG J K, LIANG Q H, REN T L, CHEN X P. First-principles approach to design and evaluation of graphene as methane sensors[J]. Mater Des, 2017, 119:397-405. doi: 10.1016/j.matdes.2017.01.087
    [12]
    JIANG H, CHEN X L. Simulations on methane uptake in tunable pillared porous graphene hybrid architectures[J]. J Mol Graphics Modell, 2018, 85:223-231. doi: 10.1016/j.jmgm.2018.09.006
    [13]
    BYAMBA-OCHIR N, WANG G S, BALATHANIGAIMANI M S, MOON H. High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption[J]. Appl Energy, 2017, 190:257-265. doi: 10.1016/j.apenergy.2016.12.124
    [14]
    BAGHERI N, ABEDI J. Adsorption of methane on corn cobs based activated carbon[J]. Chem Eng Res Des, 2011, 89:2038-2043. doi: 10.1016/j.cherd.2011.02.002
    [15]
    郑青榕, DO Duong D.甲烷在石墨化热解碳黑和活性炭上的吸附[J].燃料化学学报, 2010, 38(3):359-364. doi: 10.3969/j.issn.0253-2409.2010.03.018

    ZHENG Qing-rong, DO Duong D. Methane adsorption on activated carbon and carbon black[J]. J Fuel Chem Technol, 2010, 38(3):359-364. doi: 10.3969/j.issn.0253-2409.2010.03.018
    [16]
    郑青榕, 朱子文, 罗婉珍.吸附式天然气储罐充放气过程的试验研究[J].石油与天然气化工, 2014, 43(5):497-500. doi: 10.3969/j.issn.1007-3426.2014.05.007

    ZHENG Qing-rong, ZHU Zi-wen, LUO Wan-zhen. Experimental study of the ANG storage tank during charge and discharge[J]. Chem Eng Oil Gas, 2014, 43(5):497-500. doi: 10.3969/j.issn.1007-3426.2014.05.007
    [17]
    周子娥, 薛春瑜, 阳庆元, 仲崇立.新型储甲烷金属-有机骨架材料的设计[J].化学学报, 2009, 67(6):477-482. doi: 10.3321/j.issn:0567-7351.2009.06.004

    ZHOU Zi-e, XUE Chun-yu, YANG Qing-yuan, ZHONG Chong-li. Design of metal-organic frameworks for methane storage[J]. Acta Chim Sin, 2009, 67(6):477-482. doi: 10.3321/j.issn:0567-7351.2009.06.004
    [18]
    曾余瑶, 张秉坚.金属-有机骨架材料MOF-5的改进与吸附甲烷的巨正则蒙特卡罗模拟[J].物理化学学报, 2008, 24(8):1493-1497. doi: 10.3866/PKU.WHXB20080828

    ZENG Yu-yao, ZHANG Bing-jian. Designed metal-organic frameworks based on MOF-5 and their methane adsorption calculation by grand canonical monte carlo method[J]. Actq Phys-Chim Sin, 2008, 24(8):1493-1497. doi: 10.3866/PKU.WHXB20080828
    [19]
    TAHMOORESI M, SABZI F. Sorption of methane in a series of Zn-based MOFs studied by PHSC equation of state[J]. Fluid Phase Equilib, 2014, 381(381):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63d767eb9fae210c02fdd01b1524642e
    [20]
    张伊, 顾奕奕, 陈云琳, 王铭扬, 张兴华.掺杂金属离子对MOF-5吸附甲烷分子的影响[J].化工新型材料, 2015, 43(2):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201502031

    ZHANG Yi, GU Yi-yi, CHEN Yun-lin, WANG Ming-yang, ZHANG Xing-hua. Influence of metal ions doping on the gas-adsorption property of MOF-5[J]. New Chem Mater, 2015, 43(2):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201502031
    [21]
    XU G J, MENG Z S, LIU Y Z, GUO X J, DENG K M, LU R F. Heterofullerene-linked metaleorganic framework with lithium decoration for storing hydrogen and methane gases[J]. Int J Hydrogen Energy, 2019, 44(13):6702-6708. doi: 10.1016/j.ijhydene.2019.01.134
    [22]
    王晓华, 郑青榕, 高帅.甲烷在石墨烯与活性炭上的吸附平衡[J].集美大学学报(自然版), 2013, 18(6):451-455. http://d.old.wanfangdata.com.cn/Periodical/jmdxxb-zr201306009

    WANG Xiao-hua, ZHENG Qing-rong, GAO Shuai. Adsorption equilibrium of methane on graphene sheets and activated carbon[J]. J Jimei Univ, Nat Sci, 2013, 18(6):451-455. http://d.old.wanfangdata.com.cn/Periodical/jmdxxb-zr201306009
    [23]
    王泽浩, 郑青榕, 朱子文, 唐政.甲烷在碳基材料和MOFs上极低压力下的吸附平衡[J].天然气化工-C1化学与化工, 2018, 43(5):15-20. http://d.old.wanfangdata.com.cn/Periodical/trqhg201805004

    WANG Ze-hao, ZHENG Qing-rong, ZHU Zi-wen, TANG Zhen. Adsorption equilibrium of methane on carbon-based material and MOFs at very low pressure[J]. Nat Gas Chem Ind, 2018, 43(5):15-20. http://d.old.wanfangdata.com.cn/Periodical/trqhg201805004
    [24]
    ZHENG Q R, JI X, GAO S, WANG X. Analysis of adsorption equilibrium of hydrogen on graphene sheets[J]. Int J Hydrogen Energy, 2013, 38(25):10896-10902. doi: 10.1016/j.ijhydene.2013.01.098
    [25]
    CLARK A. The Theory of Adsorption and Catalysis[M]. New York:Academic Press, 1970:160-271.
    [26]
    MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci, 1997, 196(1):103-109. doi: 10.1006/jcis.1997.5198
    [27]
    MENON P G. Adsorption at high pressures[J]. Chem Rev, 1968, 68(3):277-294. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201312005
    [28]
    ZHOU L, ZHOU Y P, LI M, CHEN P, WANG Y. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon[J]. Langmuir, 2000, 16(14):5955-5959. doi: 10.1021/la991159w
    [29]
    DO D D, H D D, TRAN K N. Analysis of adsorption of gases and vapors on nonporous graphitized thermal carbon black[J]. Langmuir, 2003, 19(14):5656-5668. doi: 10.1021/la020191e
    [30]
    STEELE W A. The Interaction of Gases with Solid Surface[M]. Oxford:Pergamon, 1974.
    [31]
    曹达鹏, 高广图, 汪文川.巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报, 2000, 51(1):24-29. http://d.old.wanfangdata.com.cn/Periodical/hgxb200001005

    CAO Da-peng, GAO Guang-tu, WANG Wen-chuan. Grand canonical ensemble monte carlo simulation of adsorption storage of methane in slit micropores[J]. CIESC J, 2000, 51(1):24-29. http://d.old.wanfangdata.com.cn/Periodical/hgxb200001005
    [32]
    BÉNARD P, CHAHINE R. Determination of the adsorption isotherms of hydrogenon activated carbons above the critical temperature ofthe adsorbate over wide temperature and pressureranges[J]. Langmuir, 2001, 17(6):1950-1955. doi: 10.1021/la001381x
    [33]
    ZHU Z W, ZHENG Q R, WANG Z H, TANG Z, CHEN W. Hydrogen adsorption on graphene sheets and nonporous graphitized thermal carbon black at low surface coverage[J]. Int J Hydrogen Energy, 2017, 42:18465-18472. doi: 10.1016/j.ijhydene.2017.04.173
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return