Volume 45 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHU Yan-tao, LÜ Gang, SONG Chong-lin, LI Bo, CHEN Ke. Catalytic oxidation of soot over monovalent copper modified ZSM-5[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 106-112.
Citation: ZHU Yan-tao, LÜ Gang, SONG Chong-lin, LI Bo, CHEN Ke. Catalytic oxidation of soot over monovalent copper modified ZSM-5[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 106-112.

Catalytic oxidation of soot over monovalent copper modified ZSM-5

Funds:

National Natural Science Foundation of China 51476115

the Major State Basic Research Development Program of China 973 program

the Major State Basic Research Development Program of China 2013CB228506

the Tianjin Research Program of Application Foundation and Advanced Technology 13JCZDJC35800

  • Received Date: 2016-06-24
  • Rev Recd Date: 2016-11-14
  • Available Online: 2021-01-23
  • Publish Date: 2017-01-10
  • ZSM-5 zeolites were modified with different contents of monovalent copper by solid-state ion exchange method and used as the catalysts in soot oxidation; the effect of monovalent copper content on the catalytic performance was investigated through extensive characterization. The results indicate that high content of monovalent copper can be loaded on ZSM-5 zeolite by the solid-state ion exchange method, whereas has little detriment to the original micro-structure of ZSM-5. With the increase of copper content in catalyst, the reduction peaks at low temperature and high temperature both shift to lower temperature, while the area of low temperature reduction peak is increased. The catalytic activity of Cu-modified zeolite in soot oxidation decreases after an initial increase with the increase of Cu content. When the Cu loading exceeds 11%, the dispersion of copper species deteriorates, accompanying with a decrease in the catalytic activity for soot oxidation. Meanwhile, the addition of NO to the feed (O2/He) can enhance the soot oxidation.
  • loading
  • [1]
    ALKEMADE U G, SCHUMANN B. Engines and exhaust after treatment systems for future automotive applications[J]. Solid State Ion, 2006, 177(26/32):2291-2296. http://www.sciencedirect.com/science/article/pii/S0167273806003304
    [2]
    HOHL Y. Retrofit kit to reduce NOx and PM emissions from diesel engines using a low-pressure EGR and a DPF-system with FBC and throttling for active regeneration without production of secondary emissions[J]. Int J Bilingualism, 2015, 19(293):627-645.
    [3]
    FAYAD M, HERREROS J M, MARTOS F J, TSOLAKIS A. The role of alternative fuels on pm characteristics and influence of the diesel oxidation catalyst[J]. Environ Sci Technol, 2015, 49(19):11967-11973. doi: 10.1021/acs.est.5b02447
    [4]
    XU J F, LIU J, ZHAO Z, XU C M, ZHENG J X, DUAN A J, JIANG G Y. Easy synthesis of three-dimensionally ordered microporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soot[J]. J Catal, 2011, 282(1):1-12. doi: 10.1016/j.jcat.2011.03.024
    [5]
    SEO P W, CHO S P, HONG S H, HONG S C. The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region[J]. Appl Catal A:Gen, 2010, 380(1):21-27. https://www.researchgate.net/publication/239153973_The_influence_of_lattice_oxygen_in_titania_on_selective_catalytic_reduction_in_the_low_temperature_region
    [6]
    OLSSON L, WIJAYANTI K, LEISTNER K, KUMAR A, JOSHI S Y, KAMASAMUDRAM K, NEAL W C, ALEKSEY Y. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR[J]. Appl Catal B:Environ, 2015, 183:394-406. https://www.researchgate.net/publication/283686566_A_kinetic_model_for_sulfur_poisoning_and_regeneration_of_CuSSZ-13_used_for_NH3-SCR
    [7]
    MA A J, WANG S Z, CHENG L, XIAN H, DING Q, GUO L, MENG M, TAN Y S, TSUBAKI N, ZHANG J, ZHENG L D, LI X G. Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La 0.7 Sr0.3 Co1-xFexO3, NOx, storage catalyst[J]. Appl Catal B:Environ, 2014, 146(5):24-34.
    [8]
    IWASAKI S, MIZUTANI T, MIYAIRI Y, YUUKI K, MAKINO M. New design concept for diesel particulate filter[J]. SAE Int J Engines, 2011, 4(1):527-536. doi: 10.4271/2011-01-0603
    [9]
    [10]
    YIN F, JI S, WU P, ZHAO F, LI C, Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J]. J Catal, 2008, 257(1):108-116. doi: 10.1016/j.jcat.2008.04.010
    [11]
    FIERRO G, MORETTI G, FERRARIS G, ANDREOZZI G B. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts:Influence of Fe oxide nanoparticles size on the catalyticbehaviour for the NO-SCR by C3H8[J]. Appl Catal B:Environ, 2011, 102(1):215-223.
    [12]
    BIN F, SONG C L, LV G, SONG J O, WANG K P, LI X D. Soot low-temperature combustion on Cu-Zr/ZSM-5 catalysts in O2/He and NO/O2/He atmospheres[J]. Proc Combust Inst, 2013, 34(2):2303-2311. doi: 10.1016/j.proci.2012.07.075
    [13]
    SCHWIDDER M, SANTHOSH K M, BRVCKNER A, GRVERT W. Active sites for NO reduction over Fe-ZSM-5 catalysts[J]. Chem Commun, 2005, 6(6):805-807. https://www.researchgate.net/publication/8047732_Active_sites_for_NO_reduction_over_Fe-ZSM-5_catalysts
    [14]
    SONG Z X, ZHANG Q L, NING P, LIU X, ZHANG J H, WANG Y C, XU L S, HUANG Z Z. Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH3[J]. Res Chem Intermed, 2016, 42(10):7429-7445. doi: 10.1007/s11164-016-2545-4
    [15]
    YUAN E, ZHANG K, LU G, MO Z, TANG Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx, with NH3[J]. J Ind Eng Chem, 2016, 42:142-148. doi: 10.1016/j.jiec.2016.07.030
    [16]
    KANG W, CHOI B, KIM H. Characteristics of the simultaneous removal of PM and NOx, using CuNb-ZSM-5 coated on diesel particulate filter[J]. J Ind Eng Chem, 2013, 19(4):1406-1412. doi: 10.1016/j.jiec.2013.01.004
    [17]
    TRONCONI E, NOVA I, MARCHITTI F, KOLTSAKIS G, KARAMITROS D, MALETIC B, MARKERT N, CHATTERJEE D, HEHLE M. Interaction of NOx, reduction and soot oxidation in a DPF with Cu-zeolite SCR coating[J]. Emis Control Sci Technol, 2015, 1(2):134-151. doi: 10.1007/s40825-015-0014-y
    [18]
    SHAKYA B M, HAROLD M P, BALAKOTAIAH V. Simulations and optimization of combined Fe-and Cu-zeolite SCR monolith catalysts[J]. Chem Eng J, 2015, 278:374-384. doi: 10.1016/j.cej.2014.11.029
    [19]
    HUANG L H, ZHANG F B, WANG N, CHEN R H, ANDREW T H. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of ethanol[J]. Int J Hydrogen Energy, 2012, 37(2):1272-1279. doi: 10.1016/j.ijhydene.2011.10.005
    [20]
    URQUIETAGONZÁLEZ, MARTINS E A, PEGUIN L, BATISTA RPS S M. Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure[J]. Mater Res, 2002, 5(3):321-327. doi: 10.1590/S1516-14392002000300017
    [21]
    SCHWIDDER M, SANTHOSH K M, BRVCKNER A, GRVNERT W. Active sites for NO reduction over Fe-ZSM-5 catalysts[J]. Chem Commun, 2015, 6:805-807. https://www.researchgate.net/publication/8047732_Active_sites_for_NO_reduction_over_Fe-ZSM-5_catalysts
    [22]
    PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014, 25(7):394-401. http://www.sciencedirect.com/science/article/pii/S1385894714006652
    [23]
    DEKA U, LEZCANOGONZALEZ I, WECKHUYSEN B M, BEALE A M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catal, 2013, 3(3):413-427. doi: 10.1021/cs300794s
    [24]
    ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ABDEL-HAMID S M, ABOUL-GHEIT N A K. Hydroconversion of cyclohexene using H-ZSM-5 zeolite catalysts promoted via hydrochlorination and/or platinum incorporation[J]. J Mol Catal A:Chem, 2006, 245(1):167-177. https://www.researchgate.net/publication/244278304_Hydroconversion_of_cyclohexene_using_H-ZSM-5_zeolite_catalysts_promoted_via_hydrochlorination_andor_platinum_incorporation
    [25]
    GUILLÉN-HURTADO N, BUENO-LÓPEZ A, GARCÍA-GARCÍA A. Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NOx/O2, and O2. Importance of the cerium precursor salt[J]. Appl Catal A:Gen, 2012, 437-438:166-172. doi: 10.1016/j.apcata.2012.06.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return