Volume 44 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
WANG Lei, ZHAO Xin-hua, XIONG Zhen-hu, ZHANG Jin-miao, LI Chen, WU Chun-sheng. Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1089-1098.
Citation: WANG Lei, ZHAO Xin-hua, XIONG Zhen-hu, ZHANG Jin-miao, LI Chen, WU Chun-sheng. Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1089-1098.

Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel

Funds:

the National Natural Science Foundation of China 50878138

  • Received Date: 2016-03-16
  • Rev Recd Date: 2016-05-12
  • Available Online: 2021-01-23
  • Publish Date: 2016-09-10
  • The metal-organic frameworks, MIL-53 (Al)-NH2 and MIL-53 (Al), were synthesized and used as the adsorbents for the removal of nitrogen-containing compounds (quinoline and pyrrole) from model fuel. The adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and thermogravimetric analysis. Compared with the adsorption capacity of MIL-53 (Al), MIL-53(Al)-NH2 possesses a higher adsorption capacity for quinoline and pyrrole in the model fuel due to the hydrogen bonding interaction between MIL-53(Al)-NH2 and the nitrogen-containing compounds. The factors affecting the adsorption capacity are the adsorptive time and temperature. Furthermore, the pseudo-first-order and pseudo-second-order adsorption kinetics models were tested. It is found that the pseudo-second-order kinetics model is preferable to characterize the adsorption process. The adsorption isotherms and adsorption thermodynamics of quinoline and pyrrole on the MIL-53(Al)-NH2 were also evaluated. The calculation of separation factor RL and thermodynamic parameters (ΔG0, ΔH0和ΔS0) show that the adsorption of quinoline/pyrrole on the MIL-53(Al)-NH2 is a spontaneous and exothermic process. The used MIL-53 (Al)-NH2 could be regenerated by simple solvent washing with ethanol and reused in the adsorption process.
  • loading
  • [1]
    WANG Z, SUN Z, KONG L, LI G. Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks[J].J Energy Chem, 2013, 22(6): 869-875. doi: 10.1016/S2095-4956(14)60266-7
    [2]
    AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. J Hazard Mater, 2016, 301: 259-276. doi: 10.1016/j.jhazmat.2015.08.045
    [3]
    AHMED I, JHUNG S H. Adsorptive denitrogenation of model fuel with cucl-loaded metal-organic frameworks (MOFs)[J]. Chem Eng J, 2014, 251: 35-42. doi: 10.1016/j.cej.2014.04.044
    [4]
    洪新, 唐克, 丁世洪.杂原子介孔Co-MCM-41分子筛的制备及其柴油深度吸附脱碱氮性能[J].燃料化学学报, 2016, 44(1): 99-105. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18767.shtml

    HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J].J Fuel Chem Technol, 2016, 44(1): 99-105. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18767.shtml
    [5]
    KHAN N A, JHUNG S H. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel[J]. J Hazard Mater, 2013, 260: 1050-1056. doi: 10.1016/j.jhazmat.2013.06.076
    [6]
    GADDAFI I, DANMALIKI, SALEH T A. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels[J]. J Cleaner Prod, 2016, 117: 50-55. doi: 10.1016/j.jclepro.2016.01.026
    [7]
    AHMED I, JHUNG S H. Remarkable improvement in adsorptive denitrogenation of model fossil fuels with cucl/activated carbon, prepared under ambient condition[J]. Chem Eng J, 2015, 279: 327-334. doi: 10.1016/j.cej.2015.05.035
    [8]
    QIU M, CHEN C, LI W. Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous vocs[J]. Catal Today, 2015, 258: 132-138. doi: 10.1016/j.cattod.2015.04.017
    [9]
    HAN X, LIN H, ZHENG Y. The role of oxygen functional groups in the adsorption of heteroaromatic nitrogen compounds[J]. J Hazard Mater, 2015, 297: 217-223. doi: 10.1016/j.jhazmat.2015.04.056
    [10]
    KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater, 2013, 244-245: 444-456. doi: 10.1016/j.jhazmat.2012.11.011
    [11]
    LIN K Y A, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67(ZIF-67) for removal of malachite green from water[J]. Chemosphere, 2015, 139: 624-631. doi: 10.1016/j.chemosphere.2015.01.041
    [12]
    BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proc Natl Acad Sci USA, 2008, 105(33): 11623-11627. doi: 10.1073/pnas.0804900105
    [13]
    FALCARO P, RICCO R, YAZDI A, IMAZ I, FURUKAWA S, MASPOCH D, AMELOOT R, EVANS J D, DOONAN C J. Application of metal and metal oxide nanoparticles@Mofs[J]. Coord Chem Rev, 2016, 307: 237-254. doi: 10.1016/j.ccr.2015.08.002
    [14]
    WU C. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution[J].Rsc Adv, 2015, 5(100): 82127-82137. doi: 10.1039/C5RA15497A
    [15]
    CHEN Q, HE Q Q, LV M M, XU Y L, YANG H B, LIU X T, WEI F Y. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Appl Surf Sci, 2015, 327: 77-85. doi: 10.1016/j.apsusc.2014.11.103
    [16]
    HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. J Hazard Mater, 2014, 283: 329-339. https://www.researchgate.net/publication/266148704_Removal_of_hazardous_organics_from_water_using_metal-organic_frameworks_MOFs_Plausible_mechanisms_for_selective_adsorptions
    [17]
    AHMED I, JHUNG S H. Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups[J]. J Hazard Mater, 2015, 283: 544-550. doi: 10.1016/j.jhazmat.2014.10.002
    [18]
    QIAN X K, YADIAN B, WU R B, LONG Y, ZHOU K, ZHU B, HUANG Y Z. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. Int J Hydrogen Energy, 2013, 38(36): 16710-16715. doi: 10.1016/j.ijhydene.2013.07.054
    [19]
    LI C, XIONG Z H, ZHANG J M, WU C S. The strengthening role of the amino group in metal-organic framework MIL-53(Al) for methylene blue and malachite green dye adsorption[J]. J Chem Eng Data, 2015, 60(11): 3414-3422. doi: 10.1021/acs.jced.5b00692
    [20]
    JIAN M P, LIU B, ZHANG G S, LIU R P, ZHANG X W. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloid Surf A, 2014, 465(1): 67-76. http://or.nsfc.gov.cn/handle/00001903-5/276499
    [21]
    XIE L T, LIU D H, HUANG H L, YANG Q Y, ZHONG C L. Efficient capture of nitrobenzene from waste water using metal-organic frameworks[J]. Chem Eng J, 2014, 246: 142-149. doi: 10.1016/j.cej.2014.02.070
    [22]
    HO Y S, CHIANG T H, HSUEH Y M. Removal of basic dye from aqueous solution using tree fern as a biosorbent[J]. Process Biochem, 2005, 40(1): 119-124. doi: 10.1016/j.procbio.2003.11.035
    [23]
    CHENG X, ZHANG A, HOU K, LIU M, WANG Y, SONG C, ZHANG G, GUO X. Size-and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents[J]. Dalton Trans, 2013, 42(37): 13698-13705. doi: 10.1039/c3dt51322j
    [24]
    MORADI S E, DADFARNIA S, SHABANI A M H, EMAMI S. Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): Equilibrium, kinetic and thermodynamic studies[J]. Desalin Water Treat, 2014, 159(3): 1-13. https://www.researchgate.net/publication/280171689_Removal_of_congo_red_from_aqueous_solution_by_its_sorption_onto_the_metal_organic_framework_MIL-100(Fe)_equilibrium_kinetic_and_thermodynamic_studies
    [25]
    LIN S, SONG Z L, CHE G B, REN A, LI P, LIU C B, ZHANG J S. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution[J]. Microporous Mesoporous Mater, 2014, 193(2): 27-34. https://www.researchgate.net/publication/261186375_Adsorption_behavior_of_metal-organic_frameworks_for_methylene_blue_from_aqueous_solution
    [26]
    HASAN Z, CHOI E J, JHUNG S H, HASAN Z, CHOI E J, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups[J]. Chem Eng J, 2013, 219(3): 537-544. https://www.researchgate.net/publication/257567022_Adsorption_of_naproxen_and_clofibric_acid_over_a_metal-organic_framework_MIL-101_functionalized_with_acidic_and_basic_groups
    [27]
    LIU H W, DONG Y H, WANG H Y, YUN L. Adsorption behavior of ammonium by a bioadsorbent-boston ivy leaf powder[J].J Environ Sci, 2010, 22(10): 1513-1518. doi: 10.1016/S1001-0742(09)60282-5
    [28]
    MCGUIRE C V, FORGAN R S. The surface chemistry of metal-organic frameworks[J]. Chem Commun, 2015, 51(25): 5199-5217. doi: 10.1039/C4CC04458D
    [29]
    AHMED I, KHAN N A, HASAN Z, JHUNG S H. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion[J]. J Hazard Mater, 2013, 250-251: 37-44. doi: 10.1016/j.jhazmat.2013.01.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return