Volume 48 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393.
Citation: LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393.

Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration

Funds:

National Key Research and Development Program 2018YFB0605104

Hubei Province Key Research and Development Program 2020BCA076

More Information
  • Corresponding author: ZHAO Yong-chun, Tel:13419608698, E-mail:yczhao@hust.edu.cn
  • Received Date: 2020-09-10
  • Rev Recd Date: 2020-10-08
  • Available Online: 2021-01-23
  • Publish Date: 2020-11-10
  • In order to investigate the influence of spraying the agglomeration adsorbent on the removal efficiency of fine particles and heavy metals, the sampling and tests on particles and heavy metals were carried out before and after the dedusters and the desulfurization towers in the Unit 1 of a power plant in Hubei Province with a capacity of 330 MW and equipped with a double-chamber four-electric-field electrostatic precipitator. The test results show that after spraying the agglomeration adsorbent in the flue, the proportion of the particulate heavy metals at the ESP inlet increases, the Se element increasing significantly in PM2.5 and PM10, while the heavy metal content in the gas phase decreases, indicating that the agglomeration adsorbent can improve the coagulation efficiency of particulate heavy metals, leading to the small particulate and heavy metals in gas phase being transferred to large particulates. In gypsum, the content of heavy metals is significantly reduced after agglomeration, indicating that heavy metals can join the desulfurized gypsum. Also, the heterogeneous agglomeration enhances the effect of ESP on the removal of heavy metals. At the point before final discharge to the chimney, there is a significant decrease in the content of heavy metals compared with the non-agglomerated condition, which indicates that the heavy metals discharged into the atmosphere after agglomeration are significantly reduced, and the heterogeneous agglomeration plays a key role in the control of heavy metals.
  • loading
  • [1]
    International Energy Agency (IEA). World Energy Outlook 2018[M].Paris: OECD Publishing, 2018
    [2]
    郭新彪, 魏红英.大气PM2.5对健康影响的研究进展[J].科学通报, 2013, 58(13): 1171-1177. http://qikan.cqvip.com/Qikan/Article/Detail?id=45934939

    GUO Xin-biao, WEI Hong-ying. Research progress on the impact of atmospheric PM2.5 on health[J]. Sci Bull, 2013, 58(13): 1171-1177. http://qikan.cqvip.com/Qikan/Article/Detail?id=45934939
    [3]
    付高平.成都市微细颗粒物(PM2.5)形成机理及对人类健康危害研究[D].成都: 西南交通大学, 2014.

    FU Gao-ping. Research on the formation mechanism of fine particulate matter (PM2.5) in Chengdu and its harm to human health[D]. Chengdu: Southwest Jiaotong University, 2014.
    [4]
    NEAS L M. Fine particulate matter and cardiovascular disease[J]. Fuel Process Technol, 2000, 65-66: 55-67. https://www.sciencedirect.com/science/article/pii/S0378382099000764
    [5]
    PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13: 1-26. http://www.cnki.com.cn/Article/CJFDTotal-JCSP201402001.htm
    [6]
    CHEN G Y, SUN Y N, WANG Q, YAN B B, CHENG Z J, MA W C. Partitioning of trace elements in coal combustion products: A comparative study of different applications in China[J]. Fuel, 2019, 240: 31-39. https://www.sciencedirect.com/science/article/pii/S0016236118320271
    [7]
    ZHOU C C, LIU G J, WU D, FANG T, WANG R W, FAN X. Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the Huainan Coalfield in China[J]. Chemosphere, 2014, 95: 193-199. http://www.ncbi.nlm.nih.gov/pubmed/24050719
    [8]
    华伟, 孙和泰, 祁建民, 黄治军, 石志鹏, 段伦博.燃煤电厂超低排放机组重金属铅、砷排放特性[J].热力发电, 2019, 48(10): 65-70. http://www.cnki.com.cn/Article/CJFDTotal-RLFD201910012.htm

    HUA Wei, SUN He-tai, QI Jian-min, HUANG Zhi-jun, SHI Zhi-peng, DUAN Lun-bo. Heavy metal lead and arsenic emission characteristics of ultra-low emission units in coal-fired power plants[J]. Therm Power Gener, 2019, 48(10): 65-70. http://www.cnki.com.cn/Article/CJFDTotal-RLFD201910012.htm
    [9]
    WEI F, ZHANG J Y, ZHENG C G. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J]. J Environ Sci, 2005, 17(2): 335-339. http://www.cnki.com.cn/Article/CJFDTotal-HJKB200502034.htm
    [10]
    LI H L, ZHANG J Y, ZHAO Y C, WU C Y, ZHENG C G. Wettability of fly ashes from four coal-fired power plants in China[J]. Ind Eng Chem Res, 2011, 50(13): 7763-7771. doi: 10.1021/ie2001378
    [11]
    李志超, 段钰锋, 王运军, 黄治军, 孟素丽, 沈解忠. 300 MW燃煤电厂ESP和WFGD对烟气汞的脱除特性[J].燃料化学学报, 2013, 41(4): 491-498. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18171.shtml

    LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. The removal characteristics of flue gas mercury by ESP and WFGD in 300 MW coal-fired power plants[J]. J Fuel Chem Technol, 2013, 41(4): 491-498. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18171.shtml
    [12]
    李海龙, 张军营, 赵永椿, 张凯, 张立麒, 郑楚光.燃煤飞灰物理化学特性及其润湿机理研究[J].工程热物理学报, 2009, 30(9): 1597-1600. http://www.cqvip.com/Main/Detail.aspx?id=31431892

    LI Hai-long, ZHANG Jun-ying, ZHAO Yong-chun, ZHANG Kai, ZHANG Li-qi, ZHENG Chu-guang. Study on the physical and chemical properties of coal-fired fly ash and its wetting mechanism[J]. J Eng Thermophys, 2009, 30(9): 1597-1600. http://www.cqvip.com/Main/Detail.aspx?id=31431892
    [13]
    魏凤.燃煤亚微米颗粒的形成和团聚机制的研究[D].武汉: 华中科技大学, 2005.

    WEI Feng. Research on the formation and agglomeration mechanism of coal-fired sub-micron particles[D]. Wuhan: Huazhong University of Science and Technology, 2005.
    [14]
    RAJNIAK P, STEPANEK F, DHANASEKHARAN K, FAN R, MANCINELLI C, CHERN R T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator[J]. Powder Technol, 2009, 189(2): 190-201. http://www.sciencedirect.com/science/article/pii/S0032591008001885
    [15]
    HU B, YI Y, LIANG C, YUAN Z L, ROSZAK S, YANG L J. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators[J]. Powder Technol, 2018, 335: 186-194. https://www.sciencedirect.com/science/article/pii/S0032591018302882
    [16]
    郭沂权, 赵永椿, 李高磊, 张军营. 300MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究[J].中国电机工程学报, 2019, 39(3): 754-763. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201903012

    GUO Yi-quan, ZHAO Yong-chun, LI Gao-lei, ZHANG Jun-ying. Research on enhanced fly ash fine particulate emission control by chemical agglomeration of 300MW coal-fired power stations[J].Proc CSEE, 2019, 39(3): 754-763. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201903012
    [17]
    GUO Y Q, ZHANG J Y, ZHAO Y C, WANG S L, JIANG C, ZHENG C G. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J].Fuel, 2017, 3: 557-569. http://www.sciencedirect.com/science/article/pii/S001623611730577X
    [18]
    VIEBKE C, PICULELL, NILSSON S. On the mechanism of gelation of helix-forming biopolymers[J]. Macromolecules, 1994, 27(15): 4160-4166. doi: 10.1021/ma00093a017
    [19]
    张凯.超细颗粒物微观团聚机理数值模拟研究[D].武汉: 华中科技大学, 2009.

    ZHANG Kai. Numerical simulation study on the micro-aggregation mechanism of ultrafine particles[D]. Wuhan: Huazhong University of Science and Technology, 2009.
    [20]
    LINAK W, WENDT J. Toxic metal emissions from incineration-mechanisms and control[J]. Prog Energy Combust Sci, 1993, 19(2): 145-185. http://www.sciencedirect.com/science/article/pii/0360128593900146
    [21]
    祁倩倩.新疆燃煤电厂重金属分布规律及天然气锅炉汞的排放研究[D].新疆: 新疆师范大学, 2015.

    QI Qian-qian. Research on the distribution of heavy metals in Xinjiang coal-fired power plants and mercury emissions from natural gas boilers[D]. Xinjiang: Xinjiang Normal University, 2015.
    [22]
    李敬伟.燃煤烟气中可凝结颗粒物及典型有机污染物的排放特性实验研究[D].浙江: 浙江大学, 2018.

    LI Jing-wei. Experimental study on the emission characteristics of condensable particulate matter and typical organic pollutants in coal-fired flue gas[D]. Zhejiang: Zhejiang University, 2018.
    [23]
    ZHAO S L, DUAN Y F, LU J C, GUPTA R, PUDASAINEE D, LIU S, LIU M. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants[J]. Fuel, 2018, 232: 463-469. http://www.sciencedirect.com/science/article/pii/S0016236118309694
    [24]
    张凯华, 张锴, 潘伟平. 300MW燃煤电站砷、汞排放特征研究[J].燃料化学学报, 2013, 41(7): 839-844. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18219.shtml

    ZHANG Kai-hua, ZHANG Kai, PAN Wei-ping. Research on arsenic and mercury emission characteristics of 300MW coal-fired power station[J]. J Fuel Chem Technol, 2013, 41(7): 839-844. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18219.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return