Volume 40 Issue 06
Jun.  2012
Turn off MathJax
Article Contents
LV Yi-jun, YAN Wen-Juan, HU Shuang-hui, WANG Bao-wei. Hydrogen production by methanol decomposition using gliding arc gas discharge[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 698-706.
Citation: LV Yi-jun, YAN Wen-Juan, HU Shuang-hui, WANG Bao-wei. Hydrogen production by methanol decomposition using gliding arc gas discharge[J]. Journal of Fuel Chemistry and Technology, 2012, 40(06): 698-706.

Hydrogen production by methanol decomposition using gliding arc gas discharge

  • Received Date: 2011-11-15
  • Rev Recd Date: 2012-01-18
  • Publish Date: 2012-06-30
  • Direct decomposition of methanol has been investigated using gliding arc gas discharge (GRD) at atmospheric pressure. Depending on the experimental conditions of Ar flow rate, methanol concentration, the electrode gap, input voltage and vaporization room temperature (VRT), different conversions are achieved ranging from 51.0% to 81.7%. Interestingly, the selectivity to the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions. The formation of little methane and C2Hx as a byproduct, and trace quantity of carbon dioxide are detected. The reaction channels of methanol decomposition induced by GRD plasma is proposed in detail.
  • loading
  • RICO V J, HUESO J L, COTRINO J, GONZA' LEZ-ELIPE A R. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol[J]. J Phys Chem A, 2010, 114(11): 4009-4016.
    LI Hui-qing, ZOU Ji-jun, ZHANG Yue-ping, LIU Chang-jun. Plasma methanol decomposition using corona discharges[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(12): 1989-1993. (in Chinese)
    LI H-Q, ZOU J-J, ZHANG Y-P, LIU C-J. Novel plasma methanol decomposition to hydrogen using corona discharges[J]. Chem Lett, 2004, 33(6): 744-745.
    TANABE S, MATSUGUMA H, OKITSU K, MATSUMOTO H. Generation of hydrogen from methanol in a dielectric-barrier discharge -plasma system[J]. Chem Lett, 2000, 29(10): 1116-1117.
    XU Y, KAMEOKA S, KISHIDA K, DEMURA M, TSAI A, HIRANO T. Catalytic properties of alkali-leached Ni3Al for hydrogen production from methanol[J]. Intermetallics, 2005, 13(2): 151- 155.
    SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming—A review[J]. Appl Catal B, 2010, 99(1/2): 43-57.
    CHANG F-W, OU T-C, SELVA ROSELIN L, CHEN W-S, LAI S-C, WU H-M. Production of hydrogen by partial oxidation of methanol over bimetallic Au-Cu/TiO2-Fe2O3 catalysts[J]. J Mol Catal A, 2009, 313(1/2): 55-64.
    YAN Z C, LI C, LIN W H. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions[J]. Int J Hydrogen Energy, 2009, 34(1): 48-55.
    TAKE T, TSURUTANI K, UMEDA M. Hydrogen production by methanol-water solution electrolysis[J]. J Power Sources, 2007, 164(1): 9-16.
    FUTAMURA S, KABASHIMA H. Effects of reactor type and voltage properties in methanol reforming with nonthermal plasma[J]. IEEE TransInd Appl, 2004, 40(6): 1459-1466.
    WANG Y F, YOU Y S, TSAI C H, WANG L C. Production of hydrogen by plasma- reforming of methanol[J]. Int J Hydrogen Energy, 2010, 35(18): 9637-9640.
    KABASHIMA H, EINAGA H, FUTAMURA S. Hydrogen generation from water, methane, and methanol with nonthermal plasma[J]. IEEE Trans Ind Appl, 2003, 39(2): 340-345.
    BURLICA R, SHIH K Y, HNATIUC B, LOCKE B R. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions[J]. Ind Eng Chem Res, 2011, 50(15): 9466-9470.
    YANG Y C, LEE B J, CHUN Y N. Characteristics of methane reforming using gliding arc reactor[J]. Energy, 2009, 34(2): 172-177.
    BO Z, YAN J , LI X , CHI Y, CEN K. Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion[J]. Int J Hydrogen Energy, 2008, 33(20): 5545-5553.
    CHUN Y N, YANG Y C, YOSHIKAWA K. Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer[J]. Catal Today, 2009, 148(3/4): 283-289.
    SREETHAWONG T, THAKONPATTHANAKUN P, CHAVADEJ S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system[J]. Int J Hydrogen Energy, 2007, 32(8): 1067-1079.
    RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence[J]. Chem Eng J, 2009, 155(3): 874-880.
    SUN Dian-ping, YANG Xiao-hua, LIU Yu-yan, CHEN Yang-qin. Study on decomposition products of methanol in AC discharge by spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 1983-1986. (in Chinese)
    SATO T, KAMBE M, NISHIYAMA H. Analysis of a methanol decomposition process by a nonthermal plasma flow[J]. J SME Int J Ser B, 2005, 48(3): 432-439.
    HAN Y, WANG J G, CHENG D G, LIU C J. Density functional theory study of methanol conversion via cold plasma[J]. Ind Eng Chem Res, 2006, 45(10): 3460-3467.
    KRASNOPEROV L N, MICHAEL J V. High-temperature shock tube studies using multipass absorption: Rate constant results for OH +CH3, OH +CH2, and the dissociation of CH3OH[J]. J Phys Chem A, 2004, 108(40): 8317-8323.
    LIDE D R. Handbook of Chemistry and Physics[M], Roca Raton (Florida): 2008-2009, FL33487-2742
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1313) PDF downloads(598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return