Volume 40 Issue 07
Jul.  2012
Turn off MathJax
Article Contents
ZHANG Li, ZHANG Jun-guang, YANG Zhong-qing, TANG Qiang. Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/γ-Al2O3 as catalytic particles[J]. Journal of Fuel Chemistry and Technology, 2012, 40(07): 886-891.
Citation: ZHANG Li, ZHANG Jun-guang, YANG Zhong-qing, TANG Qiang. Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/γ-Al2O3 as catalytic particles[J]. Journal of Fuel Chemistry and Technology, 2012, 40(07): 886-891.

Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/γ-Al2O3 as catalytic particles

  • Received Date: 2011-10-19
  • Rev Recd Date: 2011-12-28
  • Publish Date: 2012-07-31
  • Catalytic combustion of ultra-low content methane was carried out in a fluidized bed reactor with Cu/γ-Al2O3 catalysts as particle bed material; the effects of bed temperature (450~700℃), fluidizing velocity ratio (ω, 1.5~4), and inlet methane concentration (0.3%~2%) on the combustion characteristics were investigated. The results show that the bed temperature is a major influencing factor for the catalytic combustion; methane conversion increases with the bed temperature. When the bed temperature reaches 650℃, methane conversion exceeds 95% with the methane concentration lower than 1%; methane can be almost completely converted when the bed temperature reaches 700℃ and the fluidizing velocity ratio ω is not higher than 2. Methane conversion decreases with the increase of the fluidizing velocity and inlet methane concentration; when ω exceeds 3.5, the influence of temperature on methane conversion becomes less significant with an increase of the unburned methane content. Under a low temperature, the combustion is controlled by the catalytic reaction rate; activation energy Ea and reaction order m estimated by regression are 1.26×105 J/mol and 0.73, respectively. When the bed temperature exceeds 450℃, mass transport limitations turns to an important factor influencing the methane conversion.
  • loading
  • WARMUZINSKI K. Harnessing methane emissions from coal mining[J]. Process Saf Environ Prot, 2008, 86(5): 315-320.
    SU S,CHEN H. Characteristics of coal mine ventilation air flows[J]. J Environ Manage, 2008, 86(1): 44-62.
    YANG Z, GRACE J R, LIM C J, ZHANG L. Combustion of low-concentration coal bed methane in a fluidized bed reactor[J]. Energy Fuels, 2011, 25(3): 975-980.
    SRIVASTAVA M. Systematic quantification of ventilation air methane and its evaluation as an energy source[J]. Mining Eng, 2006, 58(11): 52-56.
    王一坤, 刘银河, 车得福. 通风瓦斯处理系统燃烧特性研究[J]. 工程热物理学报, 2011, 32(1): 169-172. (WANG Yi-kun,LIU Yin-he,CHE De-fu. Study on characteristics of ventilation air methane processing system[J]. Journal of Engineering Thermophysics, 2011, 32(1): 169-172.)
    FOKA M,CHAOUKI J,GUY C,KLVANA D. Natural gas combustion in a catalytic turbulent fluidized bed[J]. Chem Eng Sci,1994,49(24A): 4269-4276.
    BARON J, BULEWICZ E M, ZUKOWSKI W. Combustion of hydrocarbon fuels in a bubbling fluidized bed[J]. Combust Flame, 2002, 128(4): 410-421.
    刘安源, 刘石. 流化床内颗粒碰撞传热的理论研究[J]. 中国电机工程学报, 2003, 23(3): 161-165. (LIU An-yuan,LIU Shi. Theoretical study on impact heat transfer between particles in fluidized bed[J]. Proceedings of the CSEE,2003,23(3): 161-165.)
    OKASHA F. Staged combustion of rice straw in a fluidized bed[J]. Exp Thermal Fluid Sci, 2007, 32(1): 52-59.
    SOTUDEH-GHAREBAGH R,CHAOUKI J,SAURIOL P. An experimental study of non-premixed combustion in a turbulent fluidized-bed reactor[J]. Fuel Process Technol, 2007, 88(9): 847-858.
    SRACCPECCHIA S,CIVERA A,SAO G,SPECCHIA V. Palladium/perovskite/zirconia catalytic premixed fiber burners for efficient and clean natural gas combustion[J]. Catal Today, 2006, 117(4): 427-432.
    HAYHURST A N, JOHN J J, WAZACZ R J. The combustion of propane and air as catalyzed by platinum in a fluidized bed of hot sand [J]. Symp (Int) Combust, 1998, 27(2): 3111-3118.
    IAMARINO M, CHIRONE R, LISI L, PIRONE R, SALATINO P. Catalytic combustion of methane in a fluidized bed reactor under fuel-lean conditions [J]. Combust Sci Technol, 2002, 174(11/12): 361-375.
    IAMARINO M,AMMENDOLA P,CHIRONE R, PIRONE R, RUOPPOLO G, RUSSO G. Nonpremixed catalytic combustion of methane in a fluidized bed reactor[J]. Ind Eng Chem Res, 2006, 45(3): 1009-1013.
    郝志刚, 朱庆山, 雷泽, 李洪钟. 流化床反应器中不同Ni/Al2O3催化剂上CH4-CO2重整反应性能的比较研究[J]. 燃料化学学报, 2007, 35(4): 436-441. (HAO Zhi-gang,ZHU Qing-shan,LEI Ze,LI Hong-zhong. Comparative study of CH4-CO2 reforming over different Ni/Al2O3 catalysts in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4): 436-441.)
    孙志翱, 金保升, 章名耀, 刘仁平, 张勇. 棉秆在流化床中的燃烧特性[J]. 燃烧科学与技术, 2008, 14(2): 147-151. (SUN Zhi-ao, JIN Bao-sheng, ZHANG Ming-yao, LIU Ren-ping, ZHANG Yong. Combustion characteristics of cotton stalk in a fluidized bed[J]. Journal of Combustion Science and Technology, 2008, 14(2): 147-151.)
    MOALLEMI F,BATLEY G. Chemical modeling and measurements of the catalytic combustion of CH4/air mixtures on platinum and palladium catalysts[J]. Catal Today, 1999, 47(1/4): 235-244.
    贺苗, 陈久岭, 李永丹. 处理方法对活性炭在流化床反应器内甲烷催化裂解制氢活性的影响[J]. 燃料化学学报, 2007, 35(3): 308-312. (HE Miao, CHEN Jiu-ling, LI Yong-dan. Effect of treatment methods on catalytic activity of activated carbon in decomposition of methane to COx-free hydrogen in a fluidized-bed reactor[J]. Journal of Fuel Chemistry and Technology, 2007, 35(3): 308-312.)
    DUPONT V, ZHANG S-H, BENTLEY R, WILLIAMS A. Experimental and modeling studies of the catalytic combustion of methane[J]. Fuel, 2002, 81(6): 799-810.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2162) PDF downloads(882) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return